Docosome: Liposomes of Docetaxel
Freeze dried powder filled in vials to be reconstituted for intravenous injection
A Patented product in India, Docosome is a product which contains Docetaxel and is available as dry powder for reconstitution before Intravenous administration.

Docetaxel is mainly indicated for treatment of cancer by virtue of being a Broad Spectrum anti-neoplastic agents. It is a BCS class IV drug with log P of 2.4 and practically insoluble in water.
DOCOSOME: USPs

Product
- First of its kind product available in freeze dried dry TGPS (D-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester) liposomes dosage form.
- The Product has been designed based on optimization strategy and is also compatible for QbD approach.
- Replaces currently available market product of Docetaxel: Taxotere®

Market
- Most major market include US, Europe, Canada and Australia.

Efficacy
- Increased duration of action and half life of Docetaxel.
- Reduced Treatment Time when compared with existing Therapy Regimes including total Cost of Therapy. It is further reported to enhance the cytotoxicity of various anticancer drugs and inhibit P- glycoprotein mediated multi-drug resistance (MDR), thereby increasing the overall therapeutic efficacy of the formulation.
- Less nephrotoxic and hepatotoxic as compare to current market product Texture.
DOCOSOME: COMPLETED STUDIES

Formulation Stability Studies
- Long Term Accelerated Reconstitution Stability Studies

In vitro Efficacy Studies
- In-vitro cell cytotoxicity against MCF-7 cell lines

Preclinical Studies
- In-vivo pharmacokinetic and pharmacodynamic study of docetaxel
TECHNOLOGY OFFER
Vitamin E TPGS functionalized of Liposomes of Docetaxel

TRADE-DRESS

• Freeze dried powder filled in vials to be reconstituted for intravenous injection.

• About 58.73-fold increase in *in-vitro* cell cytotoxicity against MCF-7 cells of docetaxel (DTX) upon incorporation in to vitamin E TPGS functionalized liposomes (TPGS-liposomes-DTX) as compared to free drug when incubated for 48 h.

CRITICAL PRODUCT PERFORMANCE

• About **12.73-fold and 21.31-fold enhancement in circulation half-life** of docetaxel upon incorporation in to TPGS-liposomes-DTX(TPGS-Liposomes-Docetaxel) as compared to Taxotere® and free drug, respectively.

• About **80.21 % reduction in the tumor burden** in case of large tumors (>1000 mm3) and almost complete reduction in tumor volume (non-measurable) in case of small tumors (<1000 mm3.) after 10 days upon intravenous administration of TPGS-liposomes-DTX in contrast to **170 % increase in tumor burden in case of untreated animals.**
The developed formulation does not pose any vehicle associated toxicity and hence does not require any concomitant use of corticosteroids as found in case of Taxotere®.

Data available for stability of formulation at accelerated stability conditions is for 6 months, carried out as per ICH guidelines. Parameters evaluated include particle size, PDI and assay.

The developed formulation showed significantly lesser hepatotoxicity and nephrotoxicity as compared to marketed formulation Taxotere®.
AVANTAGES OF DOCOSOME

• The excipients used in formulation are GRAS listed, relatively inexpensive and readily available.

• The formulation has been designed based on optimization strategy and is also compatible for QbD approach.

• Significant increase in the preclinical therapeutic efficacy and safety profile of the developed formulations will have significant improvement in the patient compliance and thereby marketability.

DEVELOPMENT STATUS

• Laboratory scale; Data available for in vitro cell cytotoxicity against MCF-7 cell lines, in vivo pharmacokinetics and pharmacodynamics at preclinical level and stability studies for 6 months at accelerated conditions as per ICH guidelines.
TECHNICAL SPECIFICATIONS

- Surface modified liposomes loaded with DTX for targeted delivery at tumor site and reduced toxicity were developed. The developed system comprises of TPGS which is amphipathic and hydrophilic and exhibits the characteristics of a typical surface active agent (HLB 13-15) which suggests that it can also be used as an emulsifier, solubilizer, absorption enhancer, and a vehicle for lipid based drug delivery formulations. It is further reported to enhance the cytotoxicity of various anticancer drugs and inhibit P-glycoprotein mediated multi-drug resistance (MDR), thereby increasing the overall therapeutic efficacy of the formulation.
BRIEF BACKGROUND

Cancer:

- Uncontrolled growth of abnormal cells in the body
- Second leading global killer, accounting for 12.5% of all deaths across the world.
- Efficacy of conventional therapies enhances by utilizing the targeting potential of the nanoparticles.

Liposomes:

- Highly effective in cancer therapeutics.
- Major breakthrough in the field of liposomes technology that came is Pegylated liposomes, which can easily evade recognition by reticuloendothelial system (RES).
- The half life of liposomes is raised from several minutes to several hours, changing their pharmacokinetics from saturable and dose dependent to dose independent.
- Recently, vitamin E TPGS (D-α-tocopheryl PEG 1000 succinate) has been successfully utilized in numerous drug carrier formulations like microemulsions, micelles, nanoparticles and solid dispersions. TPGS is the one of the most investigated ester with reference to drug solubilization and drug delivery of poorly water soluble drugs.
DRUG PROFILE

• Docetaxel (DTX) is an antineoplastic agent belonging to the second generation of the taxoid family and was taken as model drug to establish the effectiveness of the developed formulation strategy.

• BCS class IV drug with log P of 2.4 and practically insoluble in water.

• The current formulation of docetaxel, Taxotere®, contains Tween 80 and ethanol as the solvent, and adverse reactions due to either the drug itself or the solvent system have been reported in patients (e.g., hypersensitivity, fluid retention).
FORMULATION CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TPGS-liposomes-DTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size</td>
<td>$112.7 \pm 10.01 \text{ nm}$</td>
</tr>
<tr>
<td>PDI</td>
<td>0.18 ± 0.01</td>
</tr>
<tr>
<td>Zeta potential</td>
<td>$-1.19 \pm 0.98 \text{ mV}$</td>
</tr>
<tr>
<td>Entrapment efficiency</td>
<td>83.63 ± 2.16</td>
</tr>
<tr>
<td>Particle drug loading</td>
<td>$6.92 \pm 0.18%$</td>
</tr>
</tbody>
</table>

CELL CYTOTOXICITY

<table>
<thead>
<tr>
<th>Formulation</th>
<th>IC50 (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free DTX</td>
<td>2.53 ± 0.37</td>
</tr>
<tr>
<td>Liposomes-DTX</td>
<td>0.35 ± 0.16</td>
</tr>
<tr>
<td>PEG-liposomes-DTX</td>
<td>0.16 ± 0.05</td>
</tr>
</tbody>
</table>

Figure: Plasma Concentration Profiles of DTX after i.v. administration of DTX solution, Taxotere, DTX loaded pain, PEGylated and TPGS functionalised Liposomes in rats (2 mg/kg as DTX)
Pharmacokinetic parameters of various DTX loaded formulations

<table>
<thead>
<tr>
<th>Formulations</th>
<th>C30 (ng/ml)</th>
<th>AUC (ng*hml⁻¹)</th>
<th>T1/2 (h)</th>
<th>MRT (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Drug</td>
<td>1708.675±25.4</td>
<td>4209.92± 34.22</td>
<td>0.95±0.08</td>
<td>1.6±0.28</td>
</tr>
<tr>
<td>Taxotere®</td>
<td>1575.84±41.34</td>
<td>4023.59±84.58</td>
<td>1.59±0.54</td>
<td>2.143±0.94</td>
</tr>
<tr>
<td>Laposomes-DTX</td>
<td>960.98±40.26</td>
<td>6012.41±401.283</td>
<td>3.32±0.612</td>
<td>4.89±0.952</td>
</tr>
<tr>
<td>PEG-Laposomes-DTX</td>
<td>896.84±29.61</td>
<td>13144.74±360.45</td>
<td>15.57±0.76</td>
<td>18.688±2.57</td>
</tr>
</tbody>
</table>

TPGS liposomes-DTX and PEG liposomes-DTX showed increase in half-life by 12.73 folds and 9.79 folds, respectively as compared to Taxotere® and 21.31 folds and 16.38 folds, respectively as compared to free DTX.

Tumor inhibition study

Figure: Comparison of % change in tumor volume and % tumor burden of different formulation in large tumors (>1000) mm³
Figure: Comparison of % change in tumor volume and % tumor burden of different formulations in small tumors (< 1000 mm³). (***)=significant difference at p<0.001%, (**)=significant difference at p<0.001%, (=)significant difference at p<0.05%)

- 170 % increase in the tumor volume in untreated animals
- 14.67 % decrease in tumor volume in large tumors (>1000 mm³) in free DTX
- 46.39% decrease in tumor volume in large tumors (>1000 mm³) in Taxotere®
- 80.21% reduction in tumor volume in large tumors (>1000 mm³) in TPGS-liposomes-DTX
- Complete reduction (non measurable) in tumor volume in small tumors (<1000 mm³) in TPGS-liposomes-DTX
Toxicity studies:

CREATININE

UREA-BUN

ALT

AST

(All values are expressed as mean ± SD (n=8), *** = significant difference at p<0.001%, ** = significant difference at p<0.01%, * = significant difference at p<0.05, a = compared to control)
100 % mortality (instant death) in Taxotere without prophylactic and concomitant use of corticosteroids
Severe tail necrosis in Taxotere even with prophylactic and concomitant use of corticosteroids
100 % survival in TPGS-liposomes-DTX without prophylactic and concomitant use of corticosteroids
No tail necrosis in TPGS-liposomes-DTX even without prophylactic and concomitant use of corticosteroids
The developed formulations showed significantly lesser toxicity as compared to marketed formulation, Taxotere®
The levels of biochemical parameters were comparable to that of control revealing negligible toxicity

Figure: Toxicity in tail of mice upon intravenous administration of various DTX loaded formulations
SUMMARY

The developed surface functionalized liposomes could be employed as effective tumor targeting carrier for delivery of various anticancer agents. The said formulation strategy exhibits following characteristics:

- TPGS-liposomes-DTX were prepared by thin film hydration method and were found to have particle size 112.7 nm, PDI <0.2 and entrapment efficiency 83.63%.
- The developed formulation was freeze dried by a patented universal step wise freeze drying cycle using suitable cryoprotectants.
- Freeze dried formulation was found to be stable when stored in accelerated stability condition for 6 months.
- Significantly higher *in-vitro* cell cytotoxicity against MCF-7 cells of docetaxel was observed upon incorporation in to surface functionalized liposomes as compared to plain liposomes and free drug.
- Significant increase in the circulation half-life of docetaxel upon incorporation in to surface functionalized liposomes as compared to plain liposomes and free drug.
- Significantly higher decrease in the tumor burden in animals in DMBA induced breast cancer tumor model as compared to marketed formulation.
- The developed formulation showed significantly lesser hepatotoxicity and nephrotoxicity as compared to marketed formulation.

IP STATUS:
Indian Patent Application and PCT filing under process.
Delhi (NCR)
IFAIA Centre, S/20-22, Greater Noida Shopping Plaza
UPSIDC Site – IV, Greater Noida – 201 308, UP, India

Bangalore
Off Bellary Road, Bengaluru-560064

Pune (Mumbai)
Baner Road, Pune-411045

US Office
Suite 108G, 2000 Walnut Ave
Fremont CA 94538

Tel. +91-(120) 2342010/4296878; +91 (080) 32558121; +91 (020) 65223365
E-Mail: iiprd@iiprd.com, info@khuranaandkhurana.com
Website: www.iiprd.com | www.khuranaandkhurana.com