MOLECULAR REBAR® for Coatings

Increased performance for the coating industry using carbon nanotubes

Reduced cost of ownership

- Longer coating lifetimes 2-3 times
- Increased damage tolerance
- Reduced labor and coating cost long-term

Reduced coating cost

- Thinner coatings possible
- Reduced corrosion inhibitors like Zinc dust
- Possible 3 coats reduced to 2 coats

ME̊LECULAR REESARN

Transforming Businesses with Nanotechnology

Molecular Rebar Design - Who We Are

- Established in 2009, to develop and commercialize a breakthrough form of discrete, surface modified multiwall carbon nanotubes (MWCNT's), called MOLECULAR REBAR® (MR)
- R\&D and Manufacturing based in Austin, TX including 100 tonne capacity, ISO 9001:2015 certified plant
- 69 Active Patents
- Fast-growth thru commercial partnerships for targeted markets for MOLECULAR REBAR®
- Black Diamond Structures: former JV with SABIC. Energy storage, commercial globally in Li and Pb batteries
- Peak Nano: Defense/Military applications
- Biopact Ventures: Targeted biomolecule delivery into cells
- MECHnano: Additive manufacturing (3D printing)

Carbon Nanotubes - History

Discovered in 1991

- Heralded as the "Next Revolution in Material Science" (Smalley, Rice University)
- An incredible amount of money spent (including $\$ 35$ billion by the US government) with modest results in the first 20 years after discovery

Major Technical Issues

- Carbon Nanotubes (CNTs) clump together into non-uniform, "cross-linked" bundles as they are created
- Extremely difficult to disperse uniformly with much dusting causing environmental and health issues
- "Micro-clumps" not very valuable in most applications

A nano tube is 10 thousand times smaller than a human hair, a bundle is about 10 times smaller than a human hair.

1-10 micron bundle has 6,000,000 individual tubes

Molecular Rebar ${ }^{\circledR}$ (MR) Technology

MRD creates functionalized and discrete (individual) multi-walled, carbon nanotubes (MWCNTs).

MOLECULAR REBAR ${ }^{\circledR}$ (MR)

- MOLECULAR REBAR® means:
- Discrete or individual nanotubes
- High aspect ratio; 'fibers'
- High purity
- Lack of catalytic residue
- Chemical functionalization
- Basis for dispersion quality
- Good interaction with paint and epoxy thru - COOH
- Molecular-scale reinforcement
- Like metal rebar in cement, but for coatings

Molecular Rebar for Coatings

MOLECULAR REBAR® vs CNT Bundles in Epoxy

3\% MR EPON 828

- Excellent dispersion of MR
- No agglomerations causing defects
- Very low catalyst residues

3\% CNT EPON 828

- Inhomogeneous distribution of CNT
- Agglomerations/bundles (poor strength)
- High catalyst residues

Benefits of Molecular Rebar ${ }^{\circledR}$

- Mechanical or structural improvements to materials (melting points < 500C)
- Tear, impact, toughness and crack improvements
- Reduced co-efficient of expansion and contraction
- Improved adhesion and other surface phenomena
- Control of crystal and microstructures
- Strength and modulus
- Transport properties
- Heat and electrical
- Network forming, control of microstructues
- Ion and molecular transport and storage
- Electromagnetic fields effects
- Absorptions and reflections that can be controlled
- Fields affect MR and MR effects fields

Patent Strategy

- MRD owns patents, licenses rights
- Licensee has available any claim in any patent for use in their field
- Global coverage
- Composition of matter for Molecular Rebar® (MR), blends, special formulations
- Second version of basic composition patent now granted allowing for about 18 more years of protection (2037) for base material
- Applications in general markets
- Very integrated coverage
- Knowledge flow throughout user community

MRD Patents

- MRD has 69 Active patents with about 65 more in the patenting process
- Examiners across the globe verify MRD has unique technology
- Key patents are for composition of matter meaning no matter how a competitor makes mostly individual, discrete tubes alone or in blends, they will likely infringe MRD patents
- Process knowledge is in the form of Trade secrets and know how
- For key market applications MRD usually has 3 layers of protection with composition of MR, formulations of MR and application

MRD IP Protected by a Strong Patent Portfolio

MRD 69 Active Patents

- Extensive number of composition of matter patents
- Coverage extends to 2037 for MR itself

MOLECULAR REBAR® - The Technology Advantage

Benefits MR Can Bring in Coatings

- 2-3X improved corrosion resistance
- Increased adhesion by 50%
- Improved impact resistance by 67%
- Improved durability and abrasion resistance
- For zinc rich, less zinc, less weight, better coating

MR Works by:

- Increased cathodic protection (Zinc rich primers)
- Increased adhesion and toughness
- Reduced water uptake

MOLECULAR REBAR® Product Forms

MOLECULAR REBAR® in Xylene - Wet Cake

- 8% MR in xylene - solid/bead-like form
- Add into commercial solvent borne coatings during normal mixing
- Typically adds <1\% additional solvent volume
- For coating/paint users/applicators

MOLECULAR REBAR® in Epoxy - Master Batch

- 2\% MR masterbatch in EPON828
- Replace a portion of epoxy when formulating a coating
- For coating/paint producers

MOLECULAR REBAR® in Water - Aqueous

- 3% MR in water - pours just like water
- Replace a portion of water when formulating water borne coatings
- For coating/paint producers

Performance in Coatings Applications

MOLECULAR REBAR® has been tested in a range of coatings with partners

- 1, 2, and 3-coat systems
- In zinc rich primers, mid-coats, 1-coat with corrosion inhibitors (organic and inorganic), water borne rubberized coatings etc.
- Marine, protective, machinery, construction
- MR is black or grey so color can be an issue to work

MOLECULAR REBAR® in coatings formulations

- Designed to be added to coating materials using existing equipment with almost no change to procedures
- For applicator use of existing personal protective equipment and clothing is sufficient
- Cleanup and spills are handled the same way as now
- There is no airborne MR in applying, use and grinding of epoxy with MR as MR does not come off epoxy

Protective/Marine: Wet Cake in Commercial Primers

- Direct addition to existing coating formulations prior to application

- Improved Performance of Commercial Formulas demonstrated example
- PPG Amercoat® ${ }^{\circledR} 68 \mathrm{HS}$ 3-component system used
- Only 0.025% MR on dry basis added on the total formulation weight basis
- MR-Xylene Wet Cake used
- Mixed using the same manufacturer instructions and standard power mixer
- $<1 \%$ additional solvent volume added to the final primer
- Should be diluted with solvent as done normally

Protective/Marine: Extended Protection for Zinc rich Primers, Salt Fog Testing

Internal: 1-Coat Coating, MR Improves Adhesion in Cathodic Disbondment Tests

- Samples scribed and electrochemically biased at -1 V vs. sat. $\mathrm{Ag} / \mathrm{AgCl}$ for 24 hrs. in $5 \% \mathrm{NaCl}$ solution
- Simulated cathodic corrosion
- Tape was then applied, detached coating area removed. Images were analyzed for the area removed.
- MR: 391 system: 25% reduction in area removed; 550 system: 56% reduction in area removed

Comparison to the Competition - MR versus Teslan

Attribute	MOLECULAR REBAR®	Teslan® (Tesla Nanocoatings)
CNTs to improve commercial zinc-rich primers	\checkmark	\checkmark
CNTs to improve lifetime of coating 2-3 times	\checkmark	$?$
CNTs to reduce coatings from 3 to 2	$?$	\checkmark

MOLECULAR REBAR® is a drop-in additive that the paint user or coatings formulator can directly use is positioned to extend coating lifetime 2-3 X and impact 50-100\%

Tesla Nanocoatings positioning is to eliminate 1 out of 3 coatings but at a high cost of $\sim \$ 200 / \mathrm{gal}$
MRD is confident it can design a two-coat replacement for three-coat systems
The competition makes only zinc-rich primers/topcoat with CNTs
MOLECULAR REBAR® allows you to get the benefits of CNTs in any coating

MOLECULAR REBAR® for Coatings - Summary of Benefits

- Reduced long term cost of ownership
- Longer coating lifetimes
- Increased damage tolerance
- Reduced labor costs - for a 2 times normal painting cycle only 1

Coat of MR is needed - saving the cost of prep, application and paint less premium for MR addition

- Less risk of incidents both safety and environmental
- Reduced coating cost
- Thinner coatings
- Reduced corrosion inhibitors like Zinc dust
- Can be a Field addition to Commercial Coatings

- Easy handling, safe and adaptable system
- Green!

Penetrating the North American Market for Oil and Gas, Marine, and Petrochemical Coatings - Indicative Structure

- To start a faster penetration of the market, the first market efforts will be to directly sell to end-users
- A Distribution Partnership including 3 coating experts who are in the oil/gas business will be formed
- The territory will be North America with target markets oil/gas, EPC and marine
- Using personal contacts develop oil majors, a platform operator, a ship owner and EPC contacts to start selling into the markets as a value sell
- MRD receives 70\% of net income, distributors the balance
- There is a 20% of net income set aside as an accrual to cover any warranty issues (could be replaced by insurance in the future)
- Each partner pays their own costs
- Partnership sells additive which is based on Xylene (other solvents including water are possible) as 0/G, Marine and EPG industry uses solvent based coatings

Marketing for Distribution Partnership

- Industry is looking for new technology to cut their long- term costs related to control of corrosion
- Selling proposition is to reduce total cost of ownership related to prevention of corrosion using corrosion coatings-
- How many times will the facility over its lifetime need to be repainted including preparation, coating labor and the coatings costs
- Calculate the same cost using twice the life of the coating and with doubling the price of the paint
- Calculate the value creation using MR compared to today's approach
- Use partners to persuade the oil industry to try the coatings
- Guarantee extra lifetime at 2 X by rebating cost premium of MR paint
- Set up a warranty accrual fund for any issues, reverse with 2 X lifetime performance
- Use industry events and meetings to drive home the message

Estimated Sales and Revenue Forecast for Distribution Partnership

- 4 initial market application with customers

1. Oil and Gas Market - Major oil and gas producer such as BP, Exxon, Chevron etc.
2. Only 2 used in estimate
3. Platform Operator - Platform operator who has 444 platforms in Gulf of Mexico
4. Ship operator who has 200 ships from 90-525 feet long
5. Major EPC user

- Each category participant wants this type of technology and the Distribution Partnership has a relationship with the leadership to drive this type of new technology
- The value is assumed to be a 100% upcharge on the paint with the savings of labor going to the end user
- The MR additive will be applied into existing paint purchased from paint companies and added before solvent is added

Estimated Sales and Revenue Forecast

- These estimates are for a reasonable ramp-up for a fraction of the market with just the initial customers for the Distribution Partnership
- A warranty pool at 20% of gross margin is included -- reversible in the future based on performance

	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	2022
Oil \& Gas Market	$\$ 30,000$	$\$ 210,000$	$\$ 375,000$
Platform Market	$\$ 30,000$	$\$ 210,000$	$\$ 375,000$
Shipping	$\$ 12,000$	$\$ 60,000$	$\$ 120,000$
EPC	$\$ 0$	$\$ 30,000$	$\$ 120,000$
Total Sales	$\$ 72,000$	$\mathbf{\$ 5 1 0 , 0 0 0}$	$\mathbf{\$ 9 9 0 , 0 0 0}$
Gross Margin	$\mathbf{\$ 6 7 , 0 0 0}$	$\mathbf{\$ 4 7 5 , 0 0 0}$	$\mathbf{\$ 9 2 0 , 0 0 0}$
Warranty (20\%)	$\mathbf{\$ 1 3 , 0 0 0}$	$\mathbf{\$ 9 5 , 0 0 0}$	$\mathbf{\$ 1 8 4 , 0 0 0}$
Adj. Gross Margin	$\mathbf{\$ 5 4 , 0 0 0}$	$\mathbf{\$ 3 8 0 , 0 0 0}$	$\mathbf{\$ 7 3 6 , 0 0 0}$
MRD Margin	$\mathbf{\$ 3 7 , 5 0 0}$	$\mathbf{\$ 2 6 6 , 6 6 6}$	$\mathbf{\$ 5 1 5 , 0 0 0}$

Joint Venture or Sale of Technology by MRD - Indicative Structure

- Would include Distribution Partnership on whatever terms partnership was formed for the focus markets
- Worldwide with all coating applications
- Would include ability to sub-license
- MRD would want a 2% royalty to maintain IP portfolio from which rights would be granted or licensed
- In due diligence, there are results of many trials adding MR to epoxy and then formulating with water and solvents, a flexible approach on product form is possible
- Investment for launch at this scale will be $\$ 2.5$ million with cash positive projected in year 4
- A joint development effort or license to develop or purchase this technology are options
- An option to purchase or license is a possibility

