a9 United States
a2y Patent Application Publication (o) Pub. No.: US 2015/0055481 A1

US 20150055481A1

Guo et al. 43) Pub. Date: Feb. 26, 2015
(54) CONTEXT-AWARE PATTERN MATCHING Publication Classification
ACCELERATOR
(51) Imt.CL
(71) Applicant: Fortinet, Inc., Sunnyvale, CA (US) HO4L 12/727 (2006.01)
HO4L 12/801 (2006.01)
(72) Inventors: Zhi Guo, San Jose, CA (US); Hongbin HO4L 29/06 (2006.01)
Lu, San Jose, CA (US); Xu Zhou, San (52) US.CL
Jose, CA (US); Lin Huang, Saratoga, CPC HO4L 45/121 (2013.01); HO4L 69/22
CA (US); Michael Xie, Palo Alto, CA (2013.01); HO4L 47/34 (2013.01)
(Us) USPC ottt 370/238
) 57 ABSTRACT
(73) Assignee: FORTINET, INC., Sunnyvale, CA (US) Methods and systems for improving accuracy, speed, and
efficiency of context-aware pattern matching are provided.
(21) Appl. No.: 14/496,355 According to one embodiment, a packet stream is received
and pre-matched by an acceleration device with one or more
(22) Filed: Sep. 25,2014 conditions to identify packets meeting the one or more con-
ditions. The acceleration device then correlates at least one
s identified packet based on the one or more conditions to
Related U.S. Application Data generate matching tokens of the packet that meet the one or
(63) Continuation-in-part of application No. 14/143,156, more conditions and sends, to one or more processors of the

filed on Dec. 30, 2013, now Pat. No. 8,819,830, which
is a continuation of application No. 13/567,183, filed
on Aug. 6, 2012, now Pat. No. 8,646,083, which is a
continuation of application No. 12/644,794, filed on
Dec. 22, 2009, now Pat. No. 8,239,950, which is a
continuation of application No. 11/837,064, filed on
Aug. 10, 2007, now Pat. No. 8,079,084.

1(}0"““\

acceleration device, the matching tokens along with identifi-
ers of the one or more conditions so that the processors can
process the matching tokens and the identifiers of the one or
more conditions based on one or more of context aware string
matching, regular expression matching, and packet field
value matching to extract packets that match context of the
one or more conditions.

General Purpose
Packet Stream swmmmmgs Processor

A4

CFPMP Accelaration

102 S T = 4

Ops

rating Sysiem

108

Low Level

Softwars
1068

Application

Software

Patent Application Publication = Feb. 26, 2015 Sheet 1 of 13 US 2015/0055481 A1

1@0“‘"\

General Purpose Bl I
Packet SIream s Processor CPMP li(éczaiwrat:on
102 b S —

Oparating Systam
108

Low Level
Software
igg

Application
Software
g

Fig. 1

Patent Application Publication

200 "\

Feb. 26,2015 Sheet 2 of 13

Packet SHaam gl

US 2015/0055481 A1l

PICP
Reassambly/
Reacrdering

CPMP Acceleration

General Purpese

Processor

208

Fig. 2

Operating System
204

Low Leveal
Software

Application
Software
212

Patent Application Publication

300 “’\

Feb. 26,2015 Sheet 3 of 13

US 2015/0055481 A1l

Context Based Packet Patlern Matching Sysiem

Reassembly Module

00

Rearder Module
304

Pre-matching Module

38

String Matching Module
306-1

Passive Overflow Patiemn
Matching Module
306-2

Active cverflow Fatlam
Matching module
306-3

Symbol Content Address
Memory Module
306-4

308

Corralation Module

Processing Module
310

Fig. 3

Patent Application Publication = Feb. 26, 2015 Sheet 4 of 13 US 2015/0055481 A1

400 “‘\

Regular
Expression

fabo\d{2, 20/ inside a “Content-Type” value field.

Rule Example: e
\ Simple / e J\:vl:n{éard
e Cuantifier

Packet 1 Covkie: abet23x=yzin

Content-Type: text/himin

Packet 2 Cookie: abemxyzin

Content-Type: abet23x\n

Fig. 4

Patent Application Publication = Feb. 26, 2015 Sheet 5 of 13 US 2015/0055481 A1

500 “‘\

First Part of
CPME Second Part of
CPMP
——————————— »
506 508
CPMA R i
o _ = Insiruction =9
roCessor ; i
Cache
510 812
Rule N -
Candidalds CPMA L1 , 1.2) Off“(.»hlp
~ Pra-Match ~« Correlation Praf‘ms“orwmmmdlm Instruction - Maemory
502 | z04 R Cache Cache Interface
Token
Locations
1
ona | U
Pr{‘cfe[\i:or e IS HTUCHON -
T Cache
j

Patent Application Publication

600 "\

Siring Malching

Feb. 26,2015 Sheet 6 of 13

Packet Stream &

Passive Overflow
Patiarn Matching

Active Overflow
Pattarmn Matching

Symbol-CAM

Fig. 6

XN

US 2015/0055481 A1l

Patent Application Publication

700 “\

Packet stream

Bloom Filter for
fength G
892

Bloom Filter for
Length n-1
706

xv Maiching

Feb. 26,2015 Sheet 7 of 13

US 2015/0055481 A1l

Exact String

for Length
3

4

Exact String

N Matching forLength

1
8

g -

To
correiation

To

= -
correiation

Patent Application Publication = Feb. 26, 2015 Sheet 8 of 13 US 2015/0055481 A1

800 ”"'\a

Chiar Comparison et Keee
ang Xn through An+3
Matched e
Location ‘ 4{ 4 4’ .
U haroe | | i i 1
| =ohard? | Xn3 Kn+2 | | Xnt ‘ Y
Packet A i i
Btream
802 Matchad
Location | 1 1
[Xne3 Xr‘n—z‘ ‘ U o¥n |
—
7 /L b4 J ¥ ———# To Correlation
Coe e O
Bting | e s A 4 A
Matching | god GEr L~ ; ! :

Thrashoid
............ 15

Patent Application Publication = Feb. 26, 2015 Sheet 9 of 13 US 2015/0055481 A1

300 "\‘S&

Starting Char 0 | » Ending Char 0
i Matching Matching
Maikch Location P . Match Location
Packat Stream 3 ;7 Distanca > . To
. o Threshold 07~ . 7 Caorralation
G902 e
Starting Charn-1 | Ending Char n-1
Matching Maiching
MatchLocafion | ateh Location _Ta
" Distance > N Correlation

_Thresheld n-17.

Patent Application Publication Feb. 26, 2015 Sheet 10 of 13 US 2015/0055481 A1

1000 "“\’g

Facket
Stream

[1611736 |19 |20 |21] 22

ot to v }

8oty

174

3

4

hit

¥
o3
~ suo

A7 hit

Yo Correlation

#40 hit

B it hit

Large Paftern {20 charyx 2

Fig. 10

Patent Application Publication Feb. 26, 2015 Sheet 11 of 13 US 2015/0055481 A1

HGO'\

""" OChip |
Mamaory
interface

v
L2

instruction | 1106
Cache

instruction | 1108
Cache

1102 ‘ A4 ‘
| instruction Fetch 1110/

R S A
Contexi ;

Dacode | [pyfers ¥ % | Decods
‘ | 1116 I |
v | v
i Special
Exenute | i Purpose < | Executs
Registars :

o v 1118 v

Packst Stream ¥

A
N

Rule Candidates >
Tokans and
Locations

uisned
ied
e 0S8

Uigd BB
Bumoien

1112 | ! i o 1114
! Write Back | ! — L Write Back

, i Token

| H

!

Rasulis o
General
Purpose

Frocessor

Patent Application Publication Feb. 26, 2015 Sheet 12 of 13

1200-\

Receaiving a Packal Siream from a Network interface

o
-

Pra-Maiching, by an Acceleration Davice, the Packet Siraam
with ona of more Conditions to Identify Packais Meeting the one
or more Conditions

US 2015/0055481 A1l

1220

// 1230

Correlaling, by the Accelaration Device, al least one Idantified
Packet basad on the ong or more Conditions {o Generate
Maiching Tokens of the Packet

/ 1240

Sanding, to one or more Processors of the Acceleration Davice,
the Matched Tokens along with [dentifiers of the one or more
Conditions

/ 1250

Processing, by the one or more Processors, the Maiched Tokens
and the ldentifiers using Processor Instructions Fatched from
Memory coupled with the Acceleration Device

Fig. 12

Patent Application Publication Feb. 26, 2015 Sheet 13 of 13 US 2015/0055481 A1

1300 ""\

N e - SU o o)
Main Mamory Read-Cnly Mass Storage
1315 Mernary Device
1320 1325

s s s

External Storage Device - p
o — Bus 1330 ;

s 3

Communication
Port(s}
13148

Processor
1308

Fig. 13

US 2015/0055481 Al

CONTEXT-AWARE PATTERN MATCHING
ACCELERATOR

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This patent application is a continuation-in-part of
U.S. patent application Ser. No. 14/143,156, filed Dec. 30,
2013, which is a continuation of Ser. No. 13/567,183, filed
Aug. 6, 2012, now U.S. Pat. No. 8,646,083, which is a con-
tinuation of U.S. patent application Ser. No. 12/644,794, filed
Dec. 22, 2009, now U.S. Pat. No. 8,239,950, which is a
continuation of U.S. patent application Ser. No. 11/837,064,
filed Aug. 10, 2007, now U.S. Pat. No. 8,079,084, all of which
are hereby incorporated by reference in their entirety for all
purposes.

[0002] This application may relate to subject matter dis-
closed in one or more of U.S. patent application Ser. No.
10/624,948; U.S. patent application Ser. No. 10/624,941;
U.S. patent application Ser. No. 10/624,452; and U.S. patent
application Ser. No. 10/624,914. Each of the aforementioned
applications is hereby incorporated by reference in its entirety
for all purposes.

COPYRIGHT NOTICE

[0003] Contained herein is material that is subject to copy-
right protection. The copyright owner has no objection to the
facsimile reproduction of the patent disclosure by any person
as itappears in the Patent and Trademark Office patent files or
records, but otherwise reserves all rights to the copyright
whatsoever. Copyright© 2014, Fortinet, Inc.

BACKGROUND

[0004] 1. Field
[0005] Embodiments of the present invention generally
relate to pattern matching of data by a context-aware accel-
erator. In particular, systems and methods for context based
pattern identification and matching of data by a hardware
acceleration device based on one or more constraints/condi-
tions are provided.

[0006] 2. Description of the Related Art

[0007] Pattern matching, in general, relates to a method of
identifying a sequence of tokens, content/parameters of
which meet constituents of one or more predefined patterns/
formats. In operation, regular expressions, field based con-
straints, string based conditions, among other such criterions
can be employed to search and match tokens as a function of
a predefined pattern or set of patterns, wherein patterns typi-
cally constitute a specific syntax by which particular charac-
ters, fields, or strings are selected from a body of text/char-
acter/symbol based data. Exemplary applications of pattern
matching include identification of location and length of a
pattern within a token sequence in order to identify some
predefined component of the matched pattern and to substi-
tute matching pattern with some other token sequence or to
take any other desired action on tokens (or data group they
form part of) that match.

[0008] Large amounts of data are transmitted on a daily
basis through computer networks, particularly via the Inter-
net. It will be appreciated that the Internet is intended to

or more endpoints, and little consideration was given conven-
tionally to the security of nodes on the network, giving unau-
thorized users a relatively easy access to networks as well as

Feb. 26, 2015

nodes on the network, via the Internet. Measures, such as
Intrusion Prevention Systems (IPS), Firewalls, Intrusion
Detection Systems (IDS), and Application Deliver Controls
(ADC), among other access control mechanisms were then
implemented to analyze network packets based on one or
more rules/conditions that define the identifiers in packets
that indicate whether they are desired or undesired, wherein
packets that match the rules may be denied or rejected and
packets that are valid and normal are transmitted to end
devices. Typically, network packets are examined by parsing
the packets to extract header and payload portions, and sub-
sequently match the packets (or parsed portions thereof) with
one or more rules/conditions/constraints defined by the
access control devices to identify if the conditions are met,
based on which the packets are accepted or rejected. Such
rules/conditions/constraints can include multiple strings,
character based expressions, or regular expressions, which
are individually or in combination matched with the incoming
and outgoing packets to detect undesired packets and handle
them accordingly.

[0009] Due to the rapid increase of network bandwidth and
cyber attack sophistication, a high performance context-
aware pattern matching and text parsing system is desired by
above mentioned access control applications. Besides the
networking area, due to the massive amount of real-time
generated unstructured data, data analysis also needs such a
high performance context-aware pattern matching and text
parsing system.

[0010] Various hardware accelerators have been developed
to perform string matching and regular expression pattern
matching. However, due to the multitude of the increasingly
complicated rules and policies being developed by the access
control devices, these existing hardware accelerators either
have limitations on certain type of rule syntaxes or have
limitations on compiled rule database memory footprint and
performance. More importantly, with the strong context-
awareness requirement by applications, integration of these
context-unaware hardware accelerators has notable negative
impact on the overall accuracy and system performance.
[0011] Therefore, thereis a need of an accurate and precise
context aware pattern matching and text parsing system and
method that can minimize the performance vulnerability of
the system. There is also a need for systems and methods that
can identity, detect, analyze, and understand massive incom-
ing unstructured packets at high speed and parse such packets
for efficient pattern matching by a hardware acceleration
device.

SUMMARY

[0012] Methods and systems are provided for improving
accuracy, speed, and efficiency of context-aware pattern
matching and parsing text based data by minimizing perfor-
mance vulnerability of the system. According to one embodi-
ment, a context-based packet pattern matching system con-
figures one or more processors of an acceleration device to be
operatively coupled with one or more general-purpose pro-
cessors. Depending upon the particular implementation, the
acceleration device or the general purpose processors can be
configured to initially receive a packet stream from one or
more network interfaces. Once the packet stream has been

module and/or reordered by a reorder module. Either or both
the modules can be implemented in the acceleration device or
the general purpose processors based on whether the reas-

US 2015/0055481 Al

sembly and/or the reordering functions are to be performed in
hardware (acceleration device) or by software (general pur-
pOse processor).

[0013] According to one embodiment, reassembled/reor-
dered packets can be received in the acceleration device for
context-based pattern matching, wherein the acceleration
device comprises a pre-matching module, a correlation mod-
ule, and a processing module. According to one embodiment,
pre-matching module is configured to match an incoming
packet stream with one or more conditions/criteria to identify
packets meeting the one or more conditions. In an implemen-
tation, such conditions can include one or a combination of
field-level constraints, protocol level constraints, string level
constraints, and character level constraints, wherein each
condition can be met by multiple packets as well as each
packet can meet multiple conditions at the same time.
[0014] According to one embodiment, pre-matching mod-
ule is configured to include a string matching module, a
passive overflow pattern-matching module, an active over-
flow pattern matching module, and a symbol Content Address
Memory module. String matching module can be configured
to implement a string level matching to assess whether a given
string-based pattern is present in any packet of the incoming
packet stream. Passive overflow pattern matching module, on
the other hand, can be configured to take the packet stream as
a first input along with taking the output from the string
matching module as the second input in order to implement
passive matching based on overflow patterns that occur
between packet characters and/or strings within a defined
range. Such a defined range, also referred to as threshold, can
either be set manually or automatically.

[0015] According to one embodiment, active overflow pat-
tern matching module is configured to implement active
matching of overtflow patterns that occur between at least two
packet characters within a defined range. In an implementa-
tion, active overflow pattern matching module can also be
configured to evaluate distance between the start of the packet
stream and a special character, wherein if the distance is
greater than a defined threshold (range), a match is reported.
Symbol content address memory matching module, on the
other hand, is configured to match packets having one or more
regular expression based conditions. In an implementation,
the symbol content address memory-matching module can
also be configured to support short patterns, medium patterns,
and long patterns, wherein each pattern is a series of charac-
ters and wild card masks.

[0016] According to one embodiment, correlation module
is configured to correlate at least one identified packet based
on the one or more conditions to generate matching tokens of
the packet that meet the one or more conditions. In an imple-
mentation, the correlation module identifies whether a set of
conditions that are implemented for a network packet stream
is met in a single packet, in which case, the module is con-
figured to send, to one or more processors of the acceleration
device, the matching tokens of the packet along with identi-
fiers of the one or more conditions. Locations of the matching
tokens in the corresponding packets can also be sent to the
processor of the acceleration device by the correlation mod-
ule and/or the pre-matching module.

[0017] According to one embodiment, processing module
is configured to receive and process the matched tokens with

Feb. 26, 2015

match the context of the one or more conditions. As merely
satisfying the one or more conditions does not make a packet
relevant for access control, the processing module, taking into
consideration, context-aware special instructions and general
purpose instructions, processes the matching tokens to iden-
tify whether the packets to which the tokens relate are of
contextual relevance. Output from the processing module can
be given to the general purpose processor to, based on the
pattern matching packets, implement the access control
mechanisms/IDS/IPS/Firewall/ADC and handle network
traffic accordingly.

[0018] Other features of embodiments of the present dis-
closure will be apparent from accompanying drawings and
from detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] In the Figures, similar components and/or features
may have the same reference label. Further, various compo-
nents of the same type may be distinguished by following the
reference label with a second label that distinguishes among
the similar components. If only the first reference label is used
in the specification, the description is applicable to any one of
the similar components having the same first reference label
irrespective of the second reference label.

[0020] FIG. 1 illustrates an exemplary architecture for pat-
tern matching in network packets received by a general-pur-
pose processor in accordance with an embodiment of the
present invention.

[0021] FIG. 2 illustrates an exemplary architecture for pat-
tern matching in network packets received by a hardware
accleration device in accordance with an embodiment of the
present invention.

[0022] FIG. 3 illustrates exemplary functional modules of a
context based packet pattern matching system a block dia-
gram in accordance with an embodiment ofthe present inven-
tion.

[0023] FIG. 4 illustrates an exemplary rule having multiple
constraints for matching with incoming network packets in
accordance with an embodiment of the present invention.
[0024] FIG. 5 illustrates an exemplary functional block
diagram of a hardware acceleration device in accordance with
an embodiment of the present invention.

[0025] FIG. 6 illustrates an exemplary architecture of a
pre-matching module in accordance with an embodiment of
the present invention.

[0026] FIG. 7 illustrates an exemplary implementation of a
string-matching module in accordance with an embodiment
of the present invention.

[0027] FIG. 8 illustrates an exemplary implementation of a
passive overtlow pattern matching module in accordance with
an embodiment of the present invention.

[0028] FIG. 9 illustrates an exemplary implementation of
an active overflow pattern matching module in accordance
with an embodiment of the present invention.

[0029] FIG. 10 illustrates an exemplary implementation of
a Symbol Content Address Memory matching module in
accordance with an embodiment of the present invention.
[0030] FIG. 11 illustrates an exemplary block diagram of
the processor of the hardware acceleration device in accor-
dance with an embodiment of the present invention.

identifiers of the one or more conditions based on one or more
of context aware string matching, regular expression match-
ing, and packet field value matching to extract packets that

[0031] FIG. 12 is a flow diagram illustrating context-based
pattern matching of network packets in accordance with an
embodiment of the present invention.

US 2015/0055481 Al

[0032] FIG. 13 is an exemplary computer system in which
or with which embodiments of the present invention may be
utilized.

DETAILED DESCRIPTION

[0033] Methods and systems are described for improving
accuracy, speed, and efficiency of context-aware pattern
matching. Embodiments ofthe present invention enable iden-
tification, detection, analysis, understanding, and conversion
of unstructured incoming network packets at relatively high
speed by means of a hardware acceleration device comprising
an acceleration processor that is aware of contextual relation-
ships between packet tokens and which performs context-
based pattern matching by means of instructions. Embodi-
ments of present invention further implement a search
methodology for input traffic packets in a semantic pattern-
matching manner to identify the contextual function and
extract information from the incoming traffic packets and
accordingly implement network access control mechanisms.
[0034] In the following description, numerous specific
details are set forth in order to provide a thorough understand-
ing of embodiments of the present disclosure. It will be appar-
ent, however, to one skilled in the art that embodiments of the
present disclosure may be practiced without some of these
specific details. In other instances, well-known structures and
devices are shown in block diagram form.

[0035] Embodiments of the present disclosure include vari-
ous steps, which will be described below. The steps may be
performed by hardware components or may be embodied in
machine-executable instructions, which may be used to cause
a general-purpose or special-purpose processor programmed
with the instructions to perform the steps.

[0036] Alternatively, the steps may be performed by a com-
bination of hardware, software, firmware and/or by human
operators.

[0037] Embodiments of the present disclosure may be pro-
vided as a computer program product, which may include a
machine-readable storage medium tangibly embodying
thereon instructions, which may be used to program a com-
puter (or other electronic devices) to perform a process. The
machine-readable medium may include, but is not limited to,
fixed (hard) drives, magnetic tape, floppy diskettes, optical
disks, compact disc read-only memories (CD-ROMs), and
magneto-optical disks, semiconductor memories, such as
ROMs, PROMs, random access memories (RAMs), pro-
grammable read-only memories (PROMs), erasable PROMs
(EPROMs), electrically erasable PROMs (EEPROMs), flash
memory, magnetic or optical cards, or other type of media/
machine-readable medium suitable for storing electronic
instructions (e.g., computer programming code, such as soft-
ware or firmware). Moreover, embodiments of the present
disclosure may also be downloaded as one or more computer
program products, wherein the program may be transferred
from a remote computer to a requesting computer by way of
data signals embodied in a carrier wave or other propagation
medium via a communication link (e.g., a modem or network
connection).

[0038] In various embodiments, the article(s) of manufac-
ture (e.g., the computer program products) containing the
computer programming code may be used by executing the
code directly from the machine-readable storage medium or
by copying the code from the machine-readable storage
medium into another machine-readable storage medium
(e.g., ahard disk, RAM, etc.) or by transmitting the code on a

Feb. 26, 2015

network for remote execution. Various methods described
herein may be practiced by combining one or more machine-
readable storage media containing the code according to the
present disclosure with appropriate standard computer hard-
ware to execute the code contained therein. An apparatus for
practicing various embodiments of the present disclosure
may involve one or more computers (or one or more proces-
sors within a single computer) and storage systems contain-
ing or having network access to computer program(s) coded
in accordance with various methods described herein, and the
method steps of the present disclosure could be accomplished
by modules, routines, subroutines, or subparts of a computer
program product.

[0039] Notably, while embodiments of the present disclo-
sure may be described using modular programming terminol-
ogy, the code implementing various embodiments of the
present disclosure is not so limited. For example, the code
may reflect other programming paradigms and/or styles,
including, but not limited to object-oriented programming
(OOP), agent oriented programming, aspect-oriented pro-
gramming, attribute-oriented programming (@OP), auto-
matic programming, dataflow programming, declarative pro-
gramming, functional programming, event-driven
programming, feature oriented programming, imperative
programming, semantic-oriented programming, functional
programming, genetic programming, logic programming,
pattern matching programming and the like.

[0040] According to one embodiment, a context-based
packet pattern matching system configures one or more pro-
cessors of an acceleration device to be operatively coupled
with one or more general-purpose processors. Although
embodiments of the present invention are described with
reference to network packet based data, it will be appreciated
by those skilled in the art that the system and methods
described herein can be configured for any kind of data within
which pattern matching is to be performed. Network packet
streams are therefore completely exemplary and all kinds of
data sequences are included within the scope of the present
invention. In an implementation, acceleration device and/or
the general purpose processor(s) can be configured to initially
receive a packet stream from one or more network interfaces.
Once the packet stream has been received, the packets can be
reassembled by a reassembly module and/or reordered by a
reorder module. Either or both the modules can be imple-
mented in any of the acceleration device and/or the general
purpose processor(s) based on whether the reassembly and/or
the reordering functions are to be performed by hardware
(e.g., an acceleration device) or by the software (e.g., running
on one or more general purpose processors).

[0041] According to one embodiment, reassembled/reor-
dered packets can be received in the acceleration device for
context-based pattern matching, wherein the acceleration
device comprises a pre-matching module, a correlation mod-
ule, and a processing module. According to one embodiment,
the pre-matching module is configured to match an incoming
packet stream with one or more conditions/criteria to identify
packets meeting the one or more conditions. In an implemen-
tation, such conditions can include one or a combination of
field-level constraints, protocol-level constraints, string-level
constraints, and character-level constraints, wherein each
condition can be met by multiple packets and each packet can
meet multiple conditions.

[0042] According to one embodiment, the pre-matching
module is configured to include a string matching module, a

US 2015/0055481 Al

passive overflow pattern-matching module, an active over-
flow pattern matching module, and a symbol Content Address
Memory module. The string matching module can be config-
ured to implement string-level matching to assess whether a
given string-based pattern is present in any packet of the
incoming packet stream. The passive overflow pattern match-
ing module, on the other hand, can be configured to take the
packet stream as a first input along with taking the output
from the string matching module as a second input in order to
implement passive matching based on overflow patterns that
occur between packet characters and/or strings within a
defined range. Such a defined range, also referred to as thresh-
old, can either be set manually or automatically.

[0043] According to one embodiment, the active overflow
pattern matching module is configured to implement active
matching of overtflow patterns that occur between at least two
packet characters within a defined range. In an implementa-
tion, the active overflow pattern matching module can also be
configured to evaluate distance between the start of the packet
stream and a special character, wherein if the distance is
greater than a defined threshold (range), a match is reported.
The symbol content address memory matching module, on
the other hand, is configured to match packets having one or
more regular expression based conditions. In an implemen-
tation, the symbol content address memory-matching module
can also be configured to support short patterns, medium
patterns, and long patterns, wherein each pattern is a series of
characters and wild card masks.

[0044] According to one embodiment, the correlation mod-
ule is configured to correlate at least one identified packet
based on the one or more conditions to generate matching
tokens of the packet that meet the one or more conditions. In
an implementation, the correlation module identifies whether
a set of conditions that are implemented for a network packet
stream is met in a single packet, in which case, the module is
configured to send, to one or more processors of the accel-
eration device, the matching tokens of the packet along with
identifiers of the one or more conditions. Locations of the
matching tokens in the corresponding packets can also be sent
to the processor of the acceleration device by the correlation
module and/or the pre-matching module.

[0045] According to one embodiment, the processing mod-
ule is configured to receive and process the matched tokens
with identifiers of the one or more conditions based on one or
more of context-aware string matching, regular expression
matching, and packet field value matching to extract packets
that match the context of the one or more conditions. As
merely satisfying the one or more conditions does not make a
packet relevant for access control, the processing module,
taking into consideration, context-aware special instructions
and general purpose instructions, processes the matching
tokens to identify whether the packets to which the tokens
relate are of contextual relevance. Output from the processing
module can be given to the general purpose processor to,
based on the pattern matching packets, implement the access
control mechanisms (e.g., Intrusion Detection System (IDS),
Intrusion Prevention System (IPS), firewall or Application
Delivery Controller (ADC)) and handle network traffic
accordingly.

[0046] FIG. 1 illustrates an exemplary architecture 100 for
pattern matching in network packets received by a general-
purpose processor 102 in accordance with an embodiment of
the present invention. Those skilled in the art will appreciate
that the illustrated construction/configuration is completely

Feb. 26, 2015

exemplary in nature and any other construction/coupling
between general-purpose processor 102 and context-aware
pattern matching and parsing (CPMP) acceleration hardware
104 is within the scope of the present disclosure. Although
embodiments of the present disclosure are made with respect
to context-based pattern matching, those skilled in the art will
appreciate that the disclosure clearly relates to any of real-
time capturing, aggregating, classifying, annotating, and stor-
ing packetized data transmitted over a network or any other
data stream.

[0047] According to one embodiment, general-purpose
processor (GPP) 102 can include/refer to a hardware device
having a fixed form and whose functionality is variable,
wherein this variable functionality is defined by fetching
instructions and executing those instructions (for example, an
Intel Xeon processor or an AMD Opteron processor), of
which a conventional central processing unit (CPU) is a com-
mon example. In an aspect, GPP 102 can itself include mul-
tiple processors, such as in a multi-core processor architec-
ture. Any such construction is therefore completely within the
scope of the present disclosure.

[0048] CPMP acceleration hardware 104, on the other
hand, can also include a processor, which may collectively be
referred to as CPMP processor 104, which can include a
computational engine designed to operate in conjunction with
other components in a computational system such as with the
GPP 102. Typically, CPMP processor 104 is optimized to
perform a specific set of tasks and can be used to offload tasks
from the GPP 102 in order to optimize system performance.
The scope of tasks performed by CPMP processor 104 may be
fixed or variable, depending on the architecture of the CPMP
processor 104 and/or of the CPMP acceleration hardware.
CPMP acceleration hardware 104 can be configured to
include software and/or firmware implemented by the CPMP
processor for offloading one or more processing tasks from
the GPP 102 to decrease processing latency for those tasks
relative to the main processor. Depending upon the particular
implementation, CPMP acceleration hardware 104 may
include a programmable gate array or an Application Specific
Integrated Circuit (ASIC).

[0049] In one embodiment, the CPMP processer 104 is
configured to perform a specific function of pattern matching,
parsing, and processing of incoming network packets to
enable network protection devices, such as IPSs, IDSs, fire-
walls, gateways and/or ADCs to accurately and efficiently
detect specific packets having defined tokens/formats indica-
tive of malicious or non-desirable packets. CPMP processor
104 can also be configured to execute any or both of general-
purpose Reduced Instruction Set Computing (RISC) instruc-
tions and special purpose CPMP instructions. Instruction sets
for both the different types of instructions can be configured
such that they support pattern-matching syntaxes, such as
Perl Compatible Regular Expression (PCRE).

[0050] According to one embodiment, a compiler associ-
ated with CPMP acceleration hardware 104 can be imple-
mented to take one or more conditions/rules/criterion defined
by a network security device as input and generate one or
more instructions to process the incoming network packets
based on the one or more conditions/rules/criterion.

[0051] FIG. 1 also illustrates a hierarchy of execution of
instructions, wherein GPP 102 uses operating system 106 to
access application software 110 by means of low-level soft-
ware 108. Low-level software 108 may act as middleware
located between the application program/software 110 and

US 2015/0055481 Al

the operating system 106 to map an old Application Program-
ming Interface (API) to a new API. GPP 102 can receive
packet data and can optionally segment it by coarse-grained
context information before sending it to CPMP acceleration
hardware/device/system 104.

[0052] According to one embodiment, CPMP acceleration
hardware/device/system 104 can pre-match and tokenize the
incoming network packets from the GPP 102 based on one or
more defined conditions/constraints/rules, such as field-level
conditions/constraints, protocol-level conditions/constraints,
string-level conditions/constraints, and character-level con-
ditions/constraints, among others. Matching tokens, packets
thereof, along with the conditions/rules being matched can
then be processed by the CPMP processor of device 104 to
implement one or a combination of context-aware string
matching, text-based protocol parsing, field value pattern
matching, field value extraction, format conversion, content/
context understanding, and regular expression matching,
among other like functions to identify packets having
matched context-based patterns and send such packets back
to the GPP 102 for necessary/desired action.

[0053] In the present architecture of FIG. 1 therefore,
CPMP acceleration 104 is behind the GPP 102, wherein the
GPP 102 can be configured to perform one or both of Internet
Protocol (IP)/Transmission Control Protocol (TCP) reassem-
bly and reordering of IP packets. According to one embodi-
ment, GPP 102 can include or be configured with a controller,
such as TCP enabled Ethernet controller (TEEC) that may
include a bufter such that when TEEC receives incoming TCP
packets, it may temporarily buffer at least a portion of the
incoming TCP packets in the buffer and then reassemble the
TCP/IP packets data and/or IP fragments for onward trans-
mission to the CPMP accelerator 104. Received missing
packets and/or out-of-sequence packets can also be reas-
sembled and/or reordered. GPP 102 can also be configured to
perform more flexible analysis before sending incoming net-
work packets to the CPMP acceleration hardware 104.
[0054] FIG. 2 illustrates an exemplary architecture 200 for
pattern matching in network packets received by a hardware
device 250 in accordance with an embodiment of the present
invention. As shown, hardware device 250 can be configured
to include or be operatively coupled with a TCP/IP reassem-
bly/recording module(s) 202 and a CPMP acceleration hard-
ware device 204, and can be configured to receive the incom-
ing network packet stream and therefore TCP/IP reassembly
and/or reordering can be oftfloaded by GPP 206 to CPMP
acceleration device 250. Furthermore, as the incoming pack-
ets are first received by the hardware 250 and processed by the
CPMP acceleration device 204, GPP 206 may no longer
receive the incoming packets from sessions that are marked as
legitimate by the CPMP acceleration device 204. Once pack-
ets that contextually match with one or more conditions/rules/
rule identifiers are identified, such packets can be forwarded
to the GPP 206 for onward processing/transmission to the
application software 212 through operating system 208 and
low-level software 210 as already described above.

[0055] FIG. 3 illustrates exemplary functional modules of a
context-based packet pattern matching system 300 in accor-
dance with an embodiment of the present invention. Those
skilled in the art will appreciate that although the present
representation of context-based packet pattern matching sys-
tem 300 is discussed in terms of exemplary functional mod-
ules spanning both a general purpose processor and a CPMP
hardware device, context-based packet pattern matching sys-

Feb. 26, 2015

tem 300 can be configured as different sub-systems that are
operatively coupled with each other, or as a single system
encompassing such sub-systems, or in any other manner as
desired. All such arrangements, structures, and constructions
are completely within the scope of the instant disclosure.
[0056] According to one embodiment, context-based
packet pattern matching system 300 can include one or more
processors in an acceleration hardware device as well as one
or more processors that form part of the general-purpose
processor. context-based packet pattern matching system 300
can also include a memory and/or one or more internal data
storage devices operatively coupled to the one or more pro-
cessors. According to one embodiment, functional modules
of context-based packet pattern matching system 300 can
include a reassembly module 302, a reordering module 304, a
pre-matching module 306, a correlation module 308, and a
processing module 310.

[0057] Inone embodiment, reassembly module 302 and/or
reordering module 304 can be implemented/executed by a
general-purpose processor upon receipt of the incoming net-
work packets. In another embodiment, reassembly module
302 and/or reordering module 304 can also be configuredina
hardware device that is operatively coupled with or includes
the CPMP acceleration hardware device such that the func-
tions relating to reassembly and/or reordering of incoming
network packets can be offloaded to the CPMP processor of
the CPMP acceleration hardware device. Therefore, the reas-
sembly module 302 and/or the reordering module 304 can be
performed by either by a general purpose processor or by a
CPMP processor or by both, as shown in FIGS. 1 and 2 above.
[0058] According to one embodiment, network packets can
include data packetized according to a variety of different
protocols (such as HyperText Transter Protocol (HTTP), File
Transfer Protocol (FTP), IP version 4 (IPv4), IP version 6
(IPv6), TCP, User Datagram Protocol (UDP), Server Mes-
sage Block (SMB), Simple Mail Transfer Protocol (SMTP),
and so on) that may be transmitted over the network. The
general purpose processor and/or the acceleration hardware
can be configured to capture, aggregate, annotate, store, and
index network packet data in real time from one or more
portions of the network and retrieve such data utilizing the
storage and the indexing database. Thus, the storage may be
operable as a packet capture repository and the indexing
database may be operable as an index into the packet capture
repository. The storage may include any kind of storage
media, including, but not limited to one or more magnetic
storage media, optical storage media, volatile memory, non-
volatile memory, flash memory, and the like, configured as a
Redundant Array of Independent Discs (RAID) implementa-
tion, a storage area network, and so on.

[0059] According to one embodiment, reassembly module
302 can be configured to arrange packets sent by a source port
in their sending sequences at the source port before sending
onward to an output port. Reassembly module 302 can there-
fore reassemble cells of a packet into a complete packet and
arrange the packets in their sending sequences for onward
transmission. Reordering module 304, on the other hand, can
be configured to gather out-of-order packets, from various
paths of network routers, for example, and reorder the packets
in correct sequence so that accurate pattern matching can take
place at the pre-matching module 306. Reordering module
304 can therefore receive a data packet and determine if the
data packet is received out of order. If found out of order,
reordering module 304 can use one or more known mecha-

US 2015/0055481 Al

nisms, such as incorporating delay, using alternate transmis-
sion paths/channels, creating temporary routing loops,
among other such mechanisms, to gather packets and then
arrange them in a defined sequence.

[0060] Pre-matching module 306 can be configured to
receive re-assembled and re-ordered incoming network pack-
ets as a stream, and match the incoming packet stream with
one or more conditions to identify packets meeting the one or
more conditions. According to one embodiment, such one or
more conditions can include packet field-level conditions/
criterions/rules, protocol-level conditions/criterions/rules,
string-level conditions/criterions/rules, and character-level
conditions/criterions/rules, among others that are configured
to process each incoming packet to determine if the packet
has one or more tokens that match the defined conditions/
criterions/rules. Pre-matching module 306 can further be
configured to determine the locations of matching tokens and
send the locations to one or more acceleration device proces-
sors for processing the matched tokens. An exemplary archi-
tecture of pre-matching module 306 is described below with
reference to FIG. 6.

[0061] According to one embodiment, pre-matching mod-
ule 306 can include a string matching module 306-1, a passive
overflow pattern matching module 306-2, an active overflow
pattern matching module 306-3, and a symbol content
address memory module 306-4. String matching module
306-1 can be configured to implement a string-level matching
to determine whether a defined string (e.g., “abc”) is present
in any of the incoming packets of the packet stream.

[0062] In an exemplary implementation, string matching
may be a kind of dictionary-matching algorithm, e.g., Aho-
Coasick string matching, that locates elements of a finite set
of strings (the “dictionary”) within an input text. The string
matching may match all patterns simultaneously. The com-
plexity of such an algorithm is linear in the length of the
patterns plus the length of the searched text plus the number
of output matches. String matching module 306-1 or any
other module/sub-module of pre-matching module 306 can
be configured to undertake a pattern matching process that
can determine one or more characteristics of the packets in
slots of memory, including, but not limited to, identifying an
application to which the packets relate, the protocol utilized
to transmit the packets, file types of payload data content,
source and/or destination addresses associated with the pack-
ets and packet lengths. The pattern matching process may
determine characteristics by comparing bit patterns of pack-
ets with a library of bit patterns associated with the charac-
teristics. An exemplary architecture of string-matching mod-
ule 306-1 is described below with reference to FIG. 7.
[0063] According to another exemplary embodiment, pre-
matching module 306 can be configured to perform pattern
matching analysis, which may determine one or more char-
acteristics of the packets in the slots of the memory, such as
identifying application to which the packets relate, protocol
utilized to transmit the packets, file types of payload data
content, source and/or destination addresses associated with
the packets, packet lengths, and so on. The pattern matching
process may determine the characteristics by comparing bit
patterns of the packets with a library of bit patterns associated
with the characteristics. According to another embodiment,
pre-matching module 306 may be one or more types of pro-
cessing units capable of performing pattern matching analy-
sis on multiple packets in parallel. For example, the pattern
matching processing unit may be a graphical processing unit

Feb. 26, 2015

that includes thousands of separate cores which may each
perform pattern matching analysis on a different packet. As
such, the pattern matching processing unit may simulta-
neously (or substantially simultaneously) perform pattern
matching analysis on the packets of one or more slots in the
memory.

[0064] According to one embodiment, passive overflow
pattern matching module 306-2 can be configured to imple-
ment passive matching based on overflow patterns that occur
between packet characters and/or strings within a defined
range. In an implementation, string-matching results from
module 306-1 can be fed into passive overflow pattern match-
ing module 306-2 as triggers for overflow patterns with
simple strings as prefixes. Passive overflow pattern matching
module 306-2 can therefore take both the packet stream as
well as the string matching results from string matching mod-
ule 306-1 as input and compare the distance between a simple
string prefix and a character of interest following the prefix
such that if the distance is greater than a certain threshold, a
match is reported to correlation module 308. An exemplary
architecture of passive overflow pattern matching module
306-2 is described below with reference to FIG. 8.

[0065] According to one embodiment, active overflow pat-
tern matching module 306-3 can be configured to implement
active matching of overflow patterns that occur between at
least two packet characters within a defined range. Active
overflow pattern matching module 306-3 therefore may
handle overflow patterns that start and end with single char-
acters by measuring a distance between two special charac-
ters or a distance between the start of the incoming packet
stream and a special character such that if the distance is
greater than a certain threshold, a match is reported to the
correlation module 308. An exemplary architecture of active
overflow pattern matching module 306-3 is described below
with reference to FIG. 9.

[0066] According to one embodiment, symbol content
address memory matching module 306-4 can be configured to
match packets based on one or more regular expression based
conditions. Symbol content address memory matching mod-
ule 306-4 therefore may handle special regular expressions
with no strings such that packets meeting the conditions
specified by the special regular expressions can be matched
and extracted. According to one embodiment, symbol content
address memory matching module 306-4 can be configured to
support short patterns, medium patterns, and long patterns,
wherein each pattern can include a series of characters and/or
wild card masks, which when matched are reported back to
the correction module 308. An exemplary architecture of
symbol content address memory module 306-4 is described
below with reference to FIG. 10.

[0067] According to one embodiment, correlation module
308 can be configured to correlate at least one identified
packet based on the one or more conditions to generate
matching tokens of the packet that meet the one or more
conditions. According to one embodiment, correlation mod-
ule 308 can be configured to identity rule IDs corresponding
to the matching one or more conditions and process the iden-
tified rule IDs with the matched packets to extract tokens from
the matched packets that fulfill the conditions specified by the
identified rule IDs, and send the extracted tokens to the CPMP
processor for handling by processing module 310. In another
exemplary implementation, pre-matching module 306 can
also be configured to send matching token locations to the
CPMP processor. According to another embodiment, corre-

US 2015/0055481 Al

lation module 308 can further be configured to generate/
extract IPS/application control candidate rule IDs, by means
of a first part of the CPMP hardware acceleration device, for
example, and compute correlation between the pre-matched
results obtained/received/retrieved from the pre-matching
module 306. According to one embodiment, pre-matching
module 306 can further be configured to tokenize text-based
packet data by means of a first part of the CPMP acceleration
device, for example. correlation module 308 can further be
configured to emit candidate rule IDs and the aforementioned
tokens along with the packet data to the processing module
310 implemented by, a second part of the CPMP acceleration
device through the CPMP processor, for example.

[0068] According to one embodiment, processing module
310 can be configured to receive and process matched tokens
with rule/condition identifiers (IDs) of the one or more con-
ditions based on one or a combination of context-aware string
matching, regular expression matching, and packet field
value matching to extract packets that match the context of the
one or more conditions. In an implementation, CPMP pro-
cessor implementing processing module 310 can be config-
ured to perform context-aware pattern matching by looking at
received tokens and their locations such that the processor
knows whether a context might exist or not, and where a
context starts if it does exist. In an exemplary implementa-
tion, context buffers can be used to hold the packet data and
one or more special purpose registers can be configured
between the pattern matching data path and the RISC data
path, which registers can serve multiple purposes including
linking the two data paths. A token buffer can be configured to
store/hold tokens and their corresponding locations generated
by pre-matching module 306, wherein these tokens and their
locations indicate the start of a “context”.

[0069] Processing module 310 can further be configured to
process the matched tokens based on one or a combination of
text-based protocol parsing, field value extraction, format
conversion, and context-aware content understanding.
According to one embodiment, CPMP processor can include
one or more processors that form part of or are operatively
coupled with the acceleration hardware device to fetch con-
text and pattern matching instructions for conducting pro-
cessing from an off-chip storage device.

[0070] According to one embodiment, context and pattern
matching instructions can include instructions for sequen-
tially performing and/or performing in parallel one or a com-
bination of exact character matching, negative character
matching, wild card matching, string matching, field match-
ing, and range matching. One or more processors of the
acceleration device can be configured to fetch context and
pattern matching instructions for conducting the step of pro-
cessing from one or more instruction caches.

[0071] FIG. 4 illustrates an exemplary rule 400 having mul-
tiple constraints for matching with incoming network packets
in accordance with an embodiment of the present invention.
Such a rule, in an exemplary embodiment, can be configured/
defined by a network security device. Those skilled in the art
will appreciate that rule 400 is exemplary in nature and any
other rule can be configured as desired by the system for
efficient and accurate context based pattern matching

[0072] In an embodiment, rule 400 is defined such that it
looks for a regular expression within the context of Content-
Type field value in an HTTP regular message. In a request
message, a “Content-Type” context starts with a token string
“Content-Type:” and ends with a “\n” (new line) delimiter, as

Feb. 26, 2015

shown in Packet 1 and Packet 2 strings. Inside the regular
expression of rule 400, there can be a simple string (e.g.,
“abc”) and a wild card “\d” that is modified by a quantifier
such as {2, 20}.

[0073] FIG. 5 illustrates an exemplary functional block
diagram of a hardware acceleration device 500 in accordance
with an embodiment of the present invention. Taking rule 400
as an example, pre-match process 502 can be configured to
look for two conditions, with the first condition relating to
whether the string “Content-Type:” is present within a packet,
and the second condition relating to whether the simple string
“abc” is present within the packet. The condition matching
information can then be fed from pre-match process 502 to a
correlation process 504, wherein correlation process 504 can
determine whether both conditions have been met by the
same packet. If so, correlation process 504 (implemented by
correlation module 308) can send the ID of the exemplary rule
as a candidate to CPMP processor 506. The pre-match pro-
cess 502 can also send the tokens’ locations to CPMP pro-
cessor 506. Thus, when CPMP processor 506 performs con-
text-aware pattern matching, CPMP processor 506, by
looking at the tokens and their locations, knows whether a
“context” might exist or not, and where a specific “context”
starts if it does exist. For both Packet 1 and Packet 2 of FIG.
4, correlation process 504 can report the example rule 400 as
a candidate to CPMP processor 506, because both packets
satisfy the two conditions. CPMP processor 506 can perform
an exact match, which can be controlled by instructions
stored in an oft-chip storage/memory interface 512. Two lev-
els of cache memory, 508 and 510, may provide on-chip
instruction caching.

[0074] FIG. 6 illustrates an exemplary architecture 600 of a
pre-matching module in accordance with an embodiment of
the present invention. As mentioned above, pre-matching
module 306 of FIG. 3 can include one or a combination of
string matching, passive overflow pattern matching, active
overflow pattern matching, and symbol content address
memory based matching. In an instance, with reference to
FIG. 6, string matching 602 performs simple string matching,
wherein its matching results can be fed into passive overflow
pattern matching 604 as triggers for overflow patterns with
simple strings as prefixes. The active overflow pattern match-
ing 606 can handle overflow patterns that start and end with
single characters, whereas symbol-CAM 608 handles special
regular expressions with no strings being extracted. Results
from all these modules can be sent to the correlation module.

[0075] FIG. 7 illustrates an exemplary implementation of a
string-matching module 700 in accordance with an embodi-
ment of the present invention. In the context of the present
example, string-matching module 700 can be configured to
support different lengths of strings, each of which can have a
bloom filter such as 702 and 706, and an exact string matching
such as 704 and 708.

[0076] FIG. 8 illustrates an exemplary implementation of'a
passive overtlow pattern-matching module 800 in accordance
with an embodiment of the present invention. In the context of
the present example, passive overflow pattern-matching mod-
ule 800 can take both a packet stream 802 as well as string
matching results 804 as inputs and can compare a distance
between a simple string prefix and a character of interest
following the prefix such that if the distance is greater than a
certain threshold, a match is reported to the correlation mod-
ule. As shown with respect to FIG. 8, block 806 is configured
to perform a character-level comparison to compute a dis-

US 2015/0055481 Al

tance between a string prefix and a character of interest,
whereas block 808 is configured to compare the computed
distance with a defined threshold (shown at 810) and output a
result reflective of both the character comparison as well as
the threshold location comparison to the correlation module.
[0077] FIG. 9 illustrates an exemplary implementation of
an active overflow pattern matching module 900 in accor-
dance with an embodiment of the present invention. In the
context of the present example, active overflow pattern-
matching module 900 can be configured to measure distance
between two special characters, or distance between start of
stream and a special character, wherein, if the distance is
greater than certain threshold, a match is reported to the
correlation module. As illustrated by FIG. 9, packet stream
902 can be received by active overflow pattern matching
module 900, wherein, for each defined/desired starting char-
acter (0 to n—1) and each corresponding ending character (O to
n-1), locations are evaluated and distance is calculated/com-
pared with a defined respective threshold for each set of
starting/ending characters. When the computed distance is
greater than the corresponding thresholds, a match is reported
to the correlation module.

[0078] FIG. 10 illustrates an exemplary implementation of
a Symbol Content Address Memory (CAM) matching mod-
ule 1000 in accordance with an embodiment of the present
invention. In the context of the present example, symbol
content address memory matching module 1000 can be con-
figured to support short patterns, medium patterns, and long
patterns, wherein each pattern can include a series of charac-
ters and wild card masks, which when matched with the
incoming packets, can be reported back to the correlation
module. As shown, short patterns can include 1 to 5 charac-
ters, medium patterns caninclude 6 to 10 characters, and large
patterns can include 11 to 20 characters, which can be pro-
cessed (by, say, a logical AND operation) with the incoming
packet stream and matched packets can be output to the
correlation module.

[0079] FIG. 11 illustrates an exemplary block diagram
1100 of CPMP processor 1102 of the hardware acceleration
device in accordance with an embodiment of the present
invention. According to one embodiment, CPMP processor
1102 can form a second part of the CPMP acceleration device

TABLE 1

Feb. 26, 2015

104 of FIG. 1, wherein the first part can include the pre-match
and the correlation module. According to one embodiment,
instructions of CPMP processor 1102 can be stored in oft-
chip storage 1104 and cached by two levels of instruction
caches, such as L1 cache 1108 and L2 cache 1106. In an
exemplary embodiment, [.1 cache 1108 can be dedicated to
one CPMP processor, while [.2 cache 1106 can be shared by
multiple CPMP processors.

[0080] According to one embodiment, CPMP processor
1102 can include an instruction fetch module 1110, coupled
to which there can be two data paths, namely, a pattern match-
ing data path 1112 and a RISC data path 1114. Pattern match-
ing data path 1112 can be configured to execute pattern
matching related CPMP special instructions listed in Table 1
(below), while RISC data path 1114 can be configured to
execute general purpose instructions listed in Table 2. These
instructions are explained in further detail separately below.
According to one embodiment, context bufters 1116 can be
used to hold the packet data, wherein one or more special
purpose registers 1118 can be configured between pattern
matching data path 1112 and RISC data path 1114. These
registers serve multiple purposes and are the link between the
two data paths. Some of them are the control registers for the
two data paths, whereas a few of them define ending points of
contextual pattern matches. Token buffer 1120 can be config-
ured as the storage to hold tokens and their corresponding
locations generated by the pre-match module. These tokens
and locations can be configured to indicate a start of a “con-
text”. In addition to pattern matching, CPMP processor 1102
can also be configured to calculate checksum, perform data
type conversion, etc. by means of RISC data path 1114 that
executes general purpose processor instructions.

[0081] Inanother embodiment, CPMP processor 1102 can
also be configured to act as a controller for pattern matching
data path. When a “context” is defined by fixed or variable
length rather than tokens and delimiters, RISC data path 1114
can be configured to extract and/or calculate a “context”
searching boundary and program it into some special purpose
registers such as 1118 before the actual pattern matching is
started. All the computing results can be compiled by the
RISC data path 1114 into a message and sent to the general
purpose processor 1122.

No. Instruction families Description

1 Simple string matching
instructions
1. case sensitive or case insensitive.

Search for a simple string with any length. Varieties
include the combinations of the following:

2. start from the current data buffer pointer, or an

offset, or the begin of the data buffer.

3. search within certain range or until the end of the

data buffer.

4. when the match is found, the (matched begin
location + 1) pointer value is optionally stored into

a special purpose register.
2 One character matching
instructions
following:
1. case sensitive or case insensitive.

Perform character matching for the next data buffer
byte. Varieties include the combinations of the

2. the data buffer byte is compared against a range of
characters, or a wild card mask, or multiple operand
characters, or a combination of them. If the data
buffer byte matches any one of them, jump to the
corresponding pointer. If no match is found, jump

to the default pointer.

3. The matched transition and the default transition

can consume or keep the data buffer byte.

US 2015/0055481 Al

TABLE 1-continued

Feb. 26, 2015

No. Instruction families

Description

3 Search for character
instructions

4 Checksum instructions

Starting from the current data pointer location, search
for the first char that satisfies the searching criteria.
When done, a test result flag is set or cleared, and the
processor continues to the next instruction. Varieties
include the combinations of the following:

1. case sensitive or case insensitive.

2. the searching criteria include a wild card mask, or
a character range, or multiple characters, or a
combination of them.

3. the searching criteria can be optionally negated.

4. The matched transition can consume or keep the
data buffer byte.

5. when the match is found, the (matched begin
location + 1) pointer value is optionally stored into

a special purpose register.

Starting from the current data pointer location,
calculate the checksum of the next certain number of
bytes, compare the checksum with the op rand

checksum value, and set/clear the test result flag.

5 Data pointer manipulation

instructions combinations of the following:

Move or set the data pointer. Varieties include the

1. move the data pointer certain number of bytes,

forwards or backwards.

2. set the data pointer to a value that is stored in a

special purpose register, or a general purpose

register.
6 Context switch instruction

Prior to the execution of this instruction, a special

purpose register has a token and its location in the data
buffer. This instruction compares the operand token
against the token in the special purpose register, if
matched, take the branch defined in the operand,

otherwise, continue on the next instruction.

[0082] According to another embodiment, Table 1 illus-
trates an exemplary list of CPMP special instruction families.
The first instruction family (No. 1) handles simple string
matching.

[0083] The second instruction family (No. 2) supports
single character matching. This single character could be a
character, a character class, a range, or a combination thereof.
The matching result can be used to determine to where execu-
tion needs to branch. According to one embodiment, the
compared character can be consumed or kept, either being a
matched one or an unmatched one. This instruction family is
a powerful group of basic building blocks to construct high
performance and low memory footprint size Deterministic
Finite Automaton (DFA) graphs.

[0084] The third instruction family (No. 3) searches for the
first character that satisfies a wide range of criteria. When the
searching is done, a test result flag is set or cleared. This
family of instructions can support many PCRE syntaxes and
can also be used in many cases where ending of a “context™ is
defined by a single-byte character or character class.

[0085] The checksum instruction family (No. 4) calculates
a checksum for a certain portion of a packet.

[0086] The data pointer manipulation instruction family
(No. 5) can move a data pointer backwards or forwards, or to
certain points that are previously determined by other search-
ing instructions. This instruction family, together with other
instruction families’ optional storing pointer value function,
can be used to represent Nondeterministic Finite Automaton
(NFA) graphs.

[0087] The context switch instruction (No. 6) compares an
operand token against tokens and their locations generated
from the packet. If matched, the execution takes the branch,
and data pointer is updated to matched token’s location. This

way, the processor can start a high-performance context-
aware pattern matching and parsing without looking for the
desired token first.

TABLE 2

No. Instruction groups Description

1 ALU instructions

2 General branch
instructions

3 Matching branch
instructions

4 Immediate jump

Perform arithmetic and logic operations.
Branch by testing the ALU result.

Branch by testing the matching result.

Jump to immediate address, or an
address in a register, and optionally store
the original instruction pointer to a
general purpose register.

Load data indexed by register from data
memory to general purpose register.
Varieties include load size, Endianness
and signed/zero extension.

write a generate purpose register’s
content to data memory.

Move data from/to a special purpose
register to/from a general purpose
register.

Non operations.

5 Data memory read
instructions

6 Data memory write
instructions

7 Special purpose
register access
instructions

8 NOP

[0088] Table 2, above, illustrates an exemplary list of gen-
eral-purpose RISC instructions.

TABLE 3

Pattern

No. interrupts Description

1 Special char When any data buffer matching instructions are

US 2015/0055481 Al

TABLE 3-continued

Pattern
No. interrupts Description

detected being executed, this logic looks for pre-defined

interrupt special character(s). When found, the ongoing
searching is interrupted and a pre-defined branch is
taken. The pre-defined delimiters include
characters, or wild card mask, or a combination of
them.

2 Search When any data buffer matching instructions are
boundary being executed, this logic monitors whether the data
reached buffer pointer exceeds a pre-defined boundary. If
interrupt yes, the ongoing searching is interrupted and a pre-

defined branch is taken.
[0089] Table 3 illustrates two exemplary CPMP searching

interrupts. These two searching interrupts can stop an ongo-
ing pattern matching and branch to a pre-determined instruc-
tion. The first interrupt (No. 1) stops an ongoing searching
when a special character or character class is seen. This spe-
cial logic can be used to handle context-aware searching
when the context is defined by delimiters. The second inter-
rupt stops an ongoing searching when the data buffer pointer
reaches certain point. This special logic can be used to handle
context-aware searching when the context is defined by
length. The second interrupt logic can also be used to detect
buffer overflow patterns commonly seen in IPS/IDS rules.
[0090] According to one embodiment, with reference to
rule 400 of FIG. 4, the tokens (“Cookie:” and “Content-Type:
) and their locations can be sent to and stored in the CPMP
processor, wherein, when the rule, as a candidate, first starts
being executed by the processor, the context switch instruc-
tion (No. 6 in Table 1) leads data pointer to where the string
“Content-Type” is, and also jumps to branch taking care of the
regular expression. The CPMP processor does not look at the
value field of “Cookie” in the packet, and therefore, Packet 1
of FIG. 4, is not going to match, even its Cookie value does
satisfy the regular expression. The CPMP processor does
have to perform pattern matching for the regular expression
on the “Content-Type:” field value in both two Packets 1 and
2. The No. 1 interrupt in Table 3 can be used, since this
“Content-Type:” context is terminated by the new line char-
acter “\n”. Some matching instructions in Table 1 can be used
to construct the pattern matching for the regular expression.
Some general-purpose instructions in Table 2 can be used to
configure the pattern matching data path, to “glue” the match-
ing instructions together, to do some calculation, and to com-
pile the report message to the general-purpose processor such
as 1122 of FIG. 11.

[0091] FIG. 12 is a flow diagram 1200 illustrating context-
based pattern matching processing of network packets in
accordance with an embodiment of the present invention. At
step 1210, hardware acceleration device can be configured to
receive a packet stream from a network interface. Such pack-
ets can either be reordered or reassembled or both by either a
general purpose processor and/or by the CPMP processor. At
step 1220, hardware acceleration device can be configured to
pre-match the packet stream based on one or more conditions
to identify packets meeting the one or more conditions. At
step 1230, hardware acceleration device can correlate at least
one identified packet based on the one or more conditions to
generated matching tokens of the packets, which, at step
1240, can be sent along with the condition/rule identifiers of
the one or more conditions to the CPMP processor. According
to one embodiment, the matched tokens and the identifiers

10

Feb. 26, 2015

can be processed using processor instructions fetched from
memory coupled with the acceleration devices to identify
packets that match the context-based patterns, wherein such
packets can then be sent to the general purpose processor(s)
for further transmission/processing.

[0092] FIG. 13 is an example of a computer system 1300
with which embodiments of the present disclosure may be
utilized. Computer system 1300 may represent or form a part
of a pattern-matching architecture (e.g., CPMP acceleration
hardware 104) or a network protection device.

[0093] Embodiments ofthe present disclosure include vari-
ous steps, which have been described above. A variety of
these steps may be performed by hardware components or
may be tangibly embodied on a computer-readable storage
medium in the form of machine-executable instructions,
which may be used to cause a general-purpose or special-
purpose processor programmed with instructions to perform
these steps. Alternatively, the steps may be performed by a
combination of hardware, software, and/or firmware.

[0094] As shown, computer system 1300 includes a bus
1330, a processor 1305, communication port 1310, a main
memory 1315, a removable storage media 1340, a read only
memory 1320 and a mass storage 1325. A person skilled in
the art will appreciate that computer system 1300 may
include more than one processor and communication ports.

[0095] Examples of processor 1305 include, but are not
limited to, an Intel® Xeon® or Itanium® processor(s), or
AMDC® Opteron® or Athlon MP® processor(s),
Motorola® lines of processors, FortiSOC™ system on a chip
processors or other future processors. Processor 1305 may
include various modules associated with context based packet
pattern matching system 300 as described with reference to
FIG. 3. For example, processor 1305 may include one or more
of pre-matching module 306 and/or correlation module 308.

[0096] Communication port 1310 can be any of an RS-232
port for use with a modem based dialup connection, a 10/100
Ethernet port, a Gigabit or 10 Gigabit port using copper or
fiber, a serial port, a parallel port, or other existing or future
ports. Communication port 1310 may be chosen depending
on a network, such a Local Area Network (LAN), Wide Area
Network (WAN), or any network to which computer system
1300 connects.

[0097] Memory 1315 can be Random Access Memory
(RAM), or any other dynamic storage device commonly
known in the art. Read only memory 1320 can be any static
storage device(s) such as, but not limited to, a Programmable
Read Only Memory (PROM) chips for storing static infor-
mation such as start-up or BIOS instructions for processor
1305.

[0098] Mass storage 1325 may be any current or future
mass storage solution, which can be used to store information
and/or instructions. Exemplary mass storage solutions
include, but are not limited to, Parallel Advanced Technology
Attachment (PATA) or Serial Advanced Technology Attach-
ment (SATA) hard disk drives or solid-state drives (internal or
external, e.g., having Universal Serial Bus (USB) and/or
Firewire interfaces), such as those available from Seagate
(e.g., the Seagate Barracuda 7200 family) or Hitachi (e.g., the
Hitachi Deskstar 7K1000), one or more optical discs, Redun-
dant Array of Independent Disks (RAID) storage, such as an
array of disks (e.g., SATA arrays), available from various
vendors including Dot Hill Systems Corp., LaCie, Nexsan
Technologies, Inc. and Enhance Technology, Inc.

US 2015/0055481 Al

[0099] Bus 1330 communicatively couples processor(s)
1305 with the other memory, storage and communication
blocks. Bus 1330 can be, such as a Peripheral Component
Interconnect (PCI)/PCI Extended (PCI-X) bus, Small Com-
puter System Interface (SCSI), USB or the like, for connect-
ing expansion cards, drives and other subsystems as well as
other buses, such a front side bus (FSB), which connects
processor 1305 to system memory.

[0100] Optionally, operator and administrative interfaces,
such as a display, keyboard, and a cursor control device, may
also be coupled to bus 1330 to support direct operator inter-
action with computer system 1300. Other operator and
administrative interfaces can be provided through network
connections connected through communication port 1310.
[0101] Removable storage media 1340 can be any kind of
external hard-drives, floppy drives, IOMEGA® Zip Drives,
Compact Disc-Read Only Memory (CD-ROM), Compact
Disc-Re-Writable (CD-RW), Digital Video Disk-Read Only
Memory (DVD-ROM).

[0102] Components described above are meant only to
exemplify various possibilities. In no way should the afore-
mentioned exemplary computer system limit the scope of the
present disclosure.

[0103] As used herein, and unless the context dictates oth-
erwise, the term “coupled to” is intended to include both
direct coupling (in which two elements that are coupled to
each other contact each other) and indirect coupling (in which
at least one additional element is located between the two
elements). Therefore, the terms “coupled to” and “coupled
with” are used synonymously. Within the context of this
document terms “coupled to” and “coupled with” are also
used euphemistically to mean “communicatively coupled
with” over a network, where two or more devices are able to
exchange data with each other over the network, possibly via
one or more intermediary device.

[0104] It should be apparent to those skilled in the art that
many more modifications besides those already described are
possible without departing from the inventive concepts
herein. The inventive subject matter, therefore, is not to be
restricted except in the spirit of the appended claims. More-
over, in interpreting both the specification and the claims, all
terms should be interpreted in the broadest possible manner
consistent with the context. In particular, the terms “com-
prises” and “comprising” should be interpreted as referring to
elements, components, or steps in a non-exclusive manner,
indicating that the referenced elements, components, or steps
may be present, or utilized, or combined with other elements,
components, or steps that are not expressly referenced. Where
the specification claims refers to at least one of something
selected from the group consisting of A, B, C . . . and N, the
text should be interpreted as requiring only one element from
the group, not A plus N, or B plus N, etc. The foregoing
description of the specific embodiments will so fully reveal
the general nature of the embodiments herein that others can,
by applying current knowledge, readily modify and/or adapt
for various applications such specific embodiments without
departing from the generic concept, and, therefore, such
adaptations and modifications should and are intended to be
comprehended within the meaning and range of equivalents
of the disclosed embodiments. It is to be understood that the
phraseology or terminology employed herein is for the pur-
pose of description and not of limitation. Therefore, while the
embodiments herein have been described in terms of pre-
ferred embodiments, those skilled in the art will recognize

Feb. 26, 2015

that the embodiments herein can be practiced with modifica-
tion within the spirit and scope of the appended claims.
[0105] While embodiments of the present disclosure have
been illustrated and described, it will be clear that the disclo-
sure is not limited to these embodiments only. Numerous
modifications, changes, variations, substitutions, and equiva-
lents will be apparent to those skilled in the art, without
departing from the spirit and scope of the disclosure, as
described in the claim.

What is claimed is:

1. A method comprising:

receiving, by a network interface of a network device, a

packet stream;

identifying one or more packets within the packet stream

that satisfy one or more conditions of a plurality of
predefined conditions by pre-matching, by an accelera-
tion device of the network device, the packet stream with
the plurality of predefined conditions;

generating matching tokens of a packet of the one or more

identified packets by correlating, by the acceleration
device, the packet based on the one or more satisfied
conditions; and

extracting information from the packet, by the acceleration

device, performing context and pattern matching pro-
cessing on the packet, wherein the context and pattern
matching processing includes one or more of context
aware string matching, regular expression matching and
packet field value matching based on the matching
tokens and information regarding the one or more satis-
fied conditions.

2. The method of claim 1, further comprising the steps of:

determining locations within the packet of the matching

tokens; and

sending the determined locations to a processor of the

acceleration device for processing the matched tokens.

3. The method of claim 1, further comprising:

receiving the packet stream by a general purpose processor

of the network device; and

offloading performance of one or more tasks to the accel-

eration device by causing the packet stream to be trans-
ferred to the acceleration device.

4. The method of claim 3, further comprising causing the
packet and the extracted information to be made available to
the general purpose processor.

5. The method of claim 1, further comprising performing
reassembly of packets in the packet stream.

6. The method of claim 1, further comprising performing
reordering of packets in the packet stream.

7. The method of claim 1, wherein each of the plurality of
predetermined conditions comprise one or more of field-level
constraints, protocol-level constraints, string-level con-
straints and character-level constraints.

8. The method of claim 1, wherein said pre-matching com-
prises string-level matching to determine existence of one or
more strings associated with the plurality of predefined con-
ditions within packets of the packet stream.

9. The method of claim 8, wherein said pre-matching fur-
ther comprises passive matching of overflow patterns that
occur between packet characters or strings within a defined
range.

10. The method of claim 9, wherein the passive matching is
conducted based on an output from the string-level matching.

US 2015/0055481 Al

11. The method of claim 1, wherein said pre-matching
comprises active matching of overflow patterns that occur
between at least two packet characters within a defined range.

12. The method of claim 1, wherein said pre-matching
comprises symbol content address memory matching that
matches packets of the packet stream satisfying one or more
regular expression based conditions.

13. The method of claim 1, further comprising processing
the packet based on one or a combination of text-based pro-
tocol parsing, field value extraction, format conversion, and
context aware content understanding.

14. The method of claim 1, further comprising fetching, by
the acceleration device, context and pattern matching instruc-
tions for conducting the context and pattern matching pro-
cessing from an off-chip storage device.

15. The method of claim 14, wherein the context and pat-
tern matching instructions comprise instructions for sequen-
tially or in parallel performing one or more of exact character
matching, negative character matching, wild card matching,
string matching, field matching and range matching.

16. The method of claim 1, further comprising fetching, by
the acceleration device, context and pattern matching instruc-
tions for conducting the context and pattern matching pro-
cessing from one or more instruction caches.

17. A context-based packet pattern matching system com-
prising:

one or more processors of an acceleration device;

one or more internal data storage devices operatively
coupled to the one or more processors and storing:

a pre-matching module configured to match a packet
stream with one or more conditions to identify packets
meeting the one or more conditions;

a correlation module configured to correlate at least one
identified packet based on the one or more conditions to
generate matching tokens of the packet that meet the one
or more conditions; and

a processing module configured to receive and process
matched tokens with identifiers of the one or more con-
ditions based on one or more of context aware string
matching, regular expression matching, and packet field
value matching to extract packets that match context of
the one or more conditions.

18. The system of claim 17, wherein the pre-matching
module is further configured to determine locations of match-
ing tokens and send the locations to the one or more proces-
sors for processing the matched tokens.

19. The system of claim 17, wherein the packet stream is
initially received by a general purpose processor.

Feb. 26, 2015

20. The system of claim 19, wherein the extracted packets
that match the context of the one or more conditions are sent
by the processing module to the general purpose processor.

21. The system of claim 17, wherein the acceleration
device comprises a programmable gate array or an applica-
tion specific integrated circuit and wherein the packet stream
is initially received in the acceleration device.

22. The system of claim 17, further comprising a packet
reassembly module configured to reassemble packets in the
packet stream, wherein the packet reassembly module is con-
figured before the pre-matching module.

23. The system of claim 17, further comprising a packet
reorder module configured to reorder packets in the packet
stream, wherein the packet reassembly module is configured
before the pre-matching module.

24. The system of claim 17, wherein the one or more
conditions comprise one or a combination of field-level con-
straints, protocol-level constraints, string-level constraints,
and character-level constraints.

25. The system of claim 17, wherein the pre-matching
module comprises a string matching module configured to
implement a string-level matching to match whether a string
given as one or more conditions is present in any packet of the
packet stream.

26. The system of claim 25, wherein the pre-matching
module comprises a passive overflow pattern matching mod-
ule configured to implement passive matching based on over-
flow patterns that occur between packet characters and/or
strings within a defined range.

27. The system of claim 26, wherein passive overflow
pattern matching module takes input from the string matching
module.

28. The system of claim 17, wherein the pre-matching
module comprises an active overflow pattern matching mod-
ule configured to implement active matching of overflow
patterns that occur between at least two packet characters
within a defined range.

29. The system of claim 17, wherein the pre-matching
module comprises a symbol content address memory match-
ing module configured to match packets having one or more
regular expression based conditions.

30. The system of claim 17, wherein the processing module
is further configured to process the matched tokens based on
one or a combination of text-based protocol parsing, field
value extraction, format conversion, and context aware con-
tent understanding.

