

Sample Landscape Study

Covid-19: Prophylaxis and Treatment

May 2020

Table of Contents

1.	Coronavirus Disease 2019 (Covid-19)	3
1.1.	Overview	3
1.2.	Coronavirus	4
1.3.	Pathophysiology of Covid-19	5
1.	3.1. Transmission	5
1.	3.2. Life cycle	6
1.	3.3. Sign and Symptoms	7
1.4.	Indian Scenario	7
2.	Objectives	9
3.	Search Methodology	9
4.	Prophylaxis and Treatment	10
4.1.	Vaccine	10
4.2.	Chemical Compounds	12
4.3.	Monoclonal Antibody	19
4.4.	Plasma Therapy	20
4.5.	Mesenchymal Stem Cells	22
5.	Trend Analysis	23
5.1.	Study Type	23
5.2.	Interventional Therapy	24
5.3.	Clinical Trial Stage	25
5.4.	Lead Sponsor Type	26
5.5.	Clinical Trial Location Vs Lead Sponsor's Country	26
5.6.	Lead Sponsor's Country Vs Interventional Drugs	27
6.	Summary	28
7.	References & Credits	29
DISC	LAIMER	30

Coronavirus Disease 2019 (Covid-19)

1.1. Overview

On 31st December 2019, the National Health Commission of China reported a cluster of cases of pneumonia with a novel virus in Wuhan, Hubei province, China. The Chinese scientist's successfully isolated novel virus strain from the patient, pursuant to which its genome sequence was made publicly available on 12th January 2020. The novel virus strain was eventually identified as belonging to coronavirus family and was termed as SARS-CoV-2. The disease caused by SARS-CoV-2 was named COVID-19 by World Health Organization (WHO). On 11 March 2020, WHO declared COVID-19 as a pandemic disease. The novel strain of coronavirus family causes illness as mild as the common cold, and also has the potential to cause severe damage to a human body by causing pneumonia, severe acute respiratory syndrome (SARS), kidney failure and in extreme cases, death.

As per the latest data#, more than 5 million people have been infected and more than 0.33 million people have succumbed to COVID-19 disease globally.

#WHO data as of May 22, 2020 (https://covid19.who.int/)

It has been observed that most COVID-19 infected patients have shown a pattern of mild to moderate symptoms of dry cough, sore throat and fever. A majority of cases were resolved with the help of mild medication. However, not all cases are resolvable by mild medication, some patients that develop fatal

complications such as organ failure, septic shock, pulmonary edema, severe pneumonia, and Acute Respiratory Distress Syndrome (ARDS)1 require intensive treatment. People with low or compromised immunity i.e. patients with co-morbidities like cancer and/ or people who have undergone an organ transplant are at a much higher -risk at catching COVID-19 infection. Through study patterns, it has been found that age has a key role in recovery. The younger a person, the higher chances of recovery, and the older a person lessen the chances. It been reported that there is a high rate of mortality in older patients aged above 60 years.2

To limit the spread of this fatal disease, most countries shut down their economies, solely to focus on the healthcare of their people. Several countries shut down and started conducting tests and, contact tracing, and wherever necessary the citizens were put into either quarantine zones or forced into self-isolation at their respective residences. Fearing the spread of the virus due to close human proximity in crowding places, large gatherings, associations, schools, markets etc. were called off. Further, masks, gloves and other gear were made mandatory to control the transmission of the virus.

With the rapid spread of the COVID-19 pandemic, the race to bring a vaccine and suitable treatment into existence caught pace. The academicians, universities, healthcare providers and companies across the globe have started fueling their energies in search of a vaccine /drug candidates for the prophylaxis and treatment of the COVID-19 disease altogether.

1.2. Coronavirus

Corona viruses are a group of viruses having a crown-like appearance due to the presence of surface projections on the virus surface as visualized by electron microscopy. Corona viruses are enveloped with positive strand of RNA viruses that infect vertebrates.3.

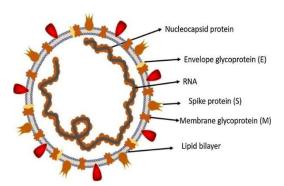


Fig.1. Novel Coronavirus (SARS-Cov-2)

The present disease pandemic is the third encounter we had with a newly emerging corona virus which seems to be transmitted from animals to people. The first of these three episodes started as an epidemic of severe respiratory disease that emerged in November 2002 in Foshan, Guangdong Province, China. The emerging epidemic was subsequently named severe acute respiratory syndrome (SARS), and, was diagnosed in 8,422 patients which caused 774 deaths in 26 countries. The etiological agent of SARS was identified as a novel coronavirus 33, the SARS coronavirus (SARS-CoV), a member of the species severe acute respiratory

syndrome-related coronavirus in the genus β -coronavirus. The SARS epidemic ended on 5 July 2003, and since 2005, no human cases of SARS have been reported.

An adult patient in Jeddah, in the month June, year 2012, in Saudi Arabia, died of a progressive respiratory and renal failure 11 days after hospital admission for respiratory symptoms. A novel corona virus was subsequently isolated from that patient and was named Middle East respiratory syndrome coronavirus (MERS-CoV) by the Coronaviridae Study Group, International Committee on Taxonomy of Viruses (CSG-ICTV). By 31 May 2015 after the appearance of the first MERS patient, 1,180 total cases of MERS and 483 deaths had been reported to the WHO. By the end of 2019, 2,499 MERS cases and 858 deaths had been reported to the WHO, from a total of 27 countries.4

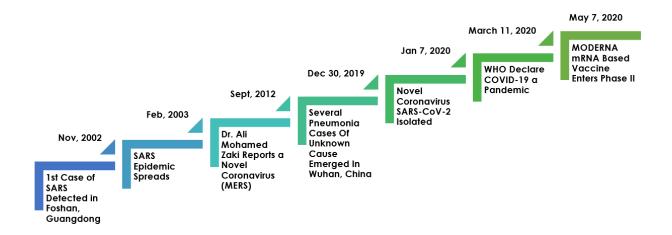
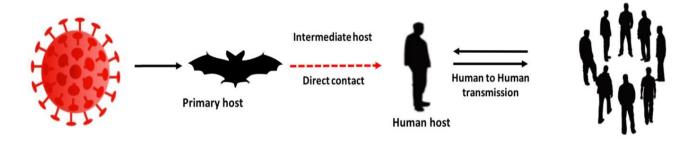



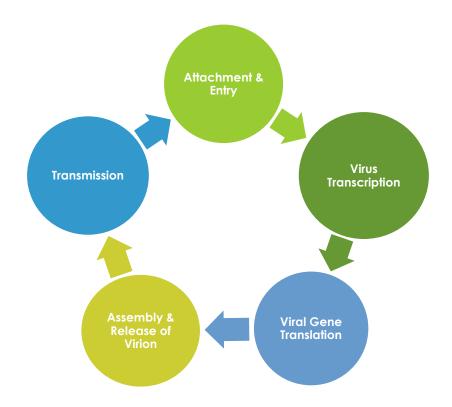
Fig.2. Coronavirus Timeline

1.3. Pathophysiology of Covid-19

1.3.1. Transmission

Person-to-person spread: The virus spread mainly from person-to-person. When a person sneeze or cough, respiratory droplets are produced which remain suspended in the air for some time. These droplets can enter in the mouths or nostrils of people who are nearby or possibly be inhaled into the lungs. Some recent studies have suggested that COVID-19 may be spread by people who are asymptomatic (not showing symptoms). Maintaining good social distance (about 6 feet) is very important in preventing the spread of COVID-19.5

Spread from contact with contaminated surfaces or objects: It is possible, that a person can get infected by COVID-19 by simply touching a contaminated surface or an object that has the virus's presence on it. The infection can be caught by a human body if the virus enters the human body via the mouth, nose or possibly the eye.


1.3.2. Life cycle

The attachment of the viral particle to the host is mediated by the S-protein complex. The binding domain of the S-protein shows presence and affinity to host receptors. Angiotensin Converting Enzyme (ACE2) is believed to assist viral attachment to the ciliary epithelial cells of a human lung.

Transcription of the viral genome is dependent on the formation of RTC; several Nsp are involved as cofactors for the RNA polymerase. Transcription of RNA genome also involves the synthesis of mRNA coding structural genes, following which the structural proteins start accumulating in the cytosol.

Translation of viral genes starts with the Replicase gene. A replicase is a complex compound of two polyproteins, which regulates host cytosol to enable transcription of the viral RNA genome. Accumulation of Nsp (1-15) in the cytosol signals formation replicase-transcriptase complex (RTC) enables transcription of the virus genome.

Assembly and release of virions are initiated by the Nucleocapsid protein in the presence of structural proteins. The M protein anchors the viral membrane components and accelerates the virion formation. The mature viral particles are released from the endoplasmic reticulum through budding. The viral particles are then released from the affected cells by exocytosis.6

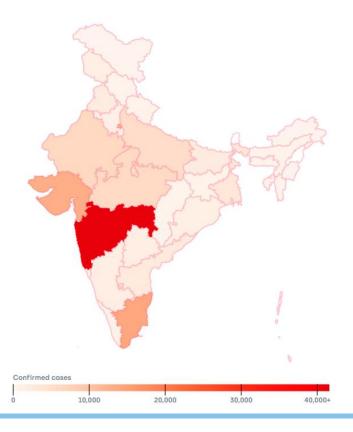
1.3.3. Sign and Symptoms

The COVID-19 virus affects different people in different ways, it has an average incubation period of 14 days.7 COVID-19 causes respiratory disease

Common symptoms:

- Fever
- Tiredness
- Dry cough

Other symptoms include:

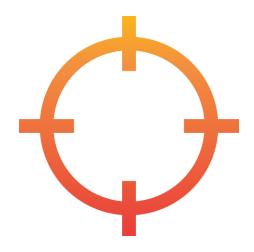

- Shortness of breath
- Aches and pains
- Sore throat
- Diarrhea, nausea, or a runny nose

Less common symptoms

- Loss of taste or smell
- Purple/blue lesions on feet and toes (COVID toes)

1.4. Indian Scenario

The novel SARS-CoV-2 coronavirus has its origin in the city of Wuhan, China. The first case was reported last year, eventually growing into a pandemic as announced by the WHO on 12th January 2020. History of COVID-19 in India began with a positive case in Kerala recorded on 30th January of 2020 caused by students who came from Wuhan, China. Cases grew from hundreds to thousands in less than two months, leading the government to call for timely lockdowns on 25 March 2020 as a preventive measure to contain the spread of the virus. The government had announced lockdowns in four installments; lockdown 1.0 from 25th March to 14th April; lockdown 2.0 from 15th April to 03rd May; lockdown 3.0 from 04th May to 17th May; lockdown 4.0 from 18th May to 30th May. As of 22 May 2020, the Ministry of Health and Family Welfare has confirmed a total of 118,447 cases, 48,534 recoveries, and 3,583 deaths in the country.


In India, four vaccine candidates are under early phases of development and may enter the clinical trial stage soon. Antimalarial drug hydroxychloroquine alone or in combination with other drugs is being used by frontline healthcare workers on severely affected patients but its efficacy and safety for COVID-19 is not yet established. Some state governments have tried convalescent plasma therapy, but the results are not very encouraging. Recently, Gilead Sciences antiviral drug remdesivir has shown positive results on the COVID-19 patient in a study and Gilead has signed non-exclusive royalty free voluntary licensing agreements with India based drug manufacturers Cipla, Jubilant Lifesciences and Mylan to manufacture and supply remdesvir to 127 countries.

Apart from modern medicines, conventional ayurvedic medicines, homeopathic medicines and herbs are also been used and tested to treat COVID-19. Recently, Dabur India's largest ayurvedic consumer goods firm has launched clinical trials to assess whether its Chyawanprash can boost immunity against the COVID-19.8 Kerala based Pankajakasthuri Herbal Research Foundation medicine, Zingivir-H used for treating respiratory infections, has got the approval from the Clinical Trial Registry of India for clinical trials on adults who have been tested positive for COVID-19. The Naiminath Homoeopathic Medical College is conducting studies to test the effects of the homeopathic medicine's arsenic album, bryonia alba, gelsemium, antimonium tartaricum and crotalus horridus.9

2. Objectives

- To perform detailed analysis of ongoing clinical trials with respect to new drugs, treatment regimen and vaccine candidates pertaining to Covid-19 pandemic.
- In depth analysis of clinical trials, to categorize them in accordance to study-based material and the treatment used. to understand the focus areas of lead sponsors.
- Graphical representation of trends (study type, clinical trial stage, etc.) from the mined data of relevant clinical trials.

3. Search Methodology

The first step is to create and define a clinical trial data set that will serve as the basis of this study. The clinical trial data was extracted from the US registry of clinical trials "Clinicaltrial.gov". Keyword based searches were carried out in the search field "condition" and "disease" on Clinicaltrial.gov.

4. Prophylaxis and Treatment

Currently, no pharmacologic therapies are available to treat COVID-19. A large number of clinical trials are ongoing to assess the suitability of several vaccine candidates such as synthetic chemical molecules, biological drugs, monoclonal antibodies, stem cells and plasma therapy etc. against the novel coronavirus treatment. In several cases, the old drugs are being repurposed to treat COVID-19 patients.

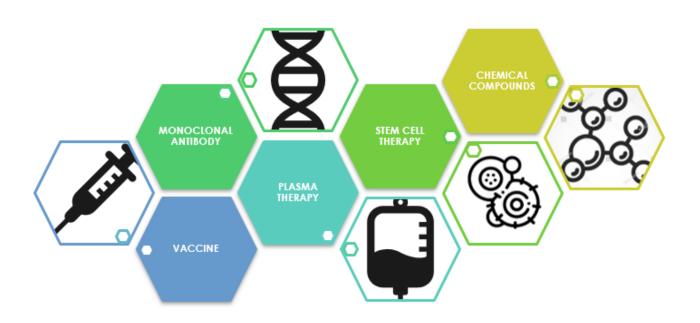


Fig.5. Therapeutic Strategies for COVID-19

4.1. Vaccine

The genetic sequence of SARS-CoV-2 was published on 12 January 2020, triggering enormous global R&D activity to develop a vaccine against COVID-19. Availability of next generation vaccine technology platforms accelerated the development and the first COVID-19 vaccine candidate entered human clinical testing on 16 March 2020. Vaccines including parts or whole inactivated viruses are commonly used in providing long term immunity due to the high level of protein expression and long-term stability. Developing inactivated or attenuated viral-based vaccines against coronavirus is challenging due to the variability of the strains. The list of the ongoing clinical trials of various vaccine candidates is provided below.10

S. NO.	SOURCE	VACCINE CANDIDATE	LEAD SPONSOR	STUDY PHASE#
1.	NCT04299724	Pathogen-Specific Aapc	SHENZHEN GENO IMMUNE MEDICAL INSTITUTE	Phase 1
2.	NCT04313127	Recombinant Adenovirus Type 5 Vector	CANSINO BIOLOGICS	Phase 1
3.	NCT04276896	LV-SMENP-DC, Antigen specific CTLs	SHENZHEN GENO-IMMUNE MEDICAL INSTITUTE	Phase 1
4.	NCT04352608	Inactivated SARS-CoV-2	SINOVAC BIOTECH	Phase 2
5.	ChiCTR2000031781	Adenovirus Type 5 Vector	CANSINO BIOLOGICAL	Phase 2
6.	ChiCTR2000032459	Inactivated	BEIJING INSTITUTE OF BIOLOGICAL PRODUCTS	Phase 2
7.	ChiCTR2000031809	Inactivated	WUHAN INSTITUTE OF BIOLOGICAL PRODUCTS	Phase 2
8.	NCT04324606	ChAdOx1 nCoV-19, MenACWY	UNIVERSITY OF OXFORD	Phase 2
9.	NCT04283461	mRNA-1273	MODERNA	Phase 2
10.	BNT162-01	3 LNP-mRNAs	BIONTECH/PFIZER	Phase 2
11.	NCT04327206	BCG Vaccine	MURDOCH CHILDRENS RESEARCH INSTITUTE	Phase 3
12.	NCT04328441	BCG Vaccine	UMC UTRECHT	Phase 3
13.	NCT04348370	BCG Vaccine	ANDREW DINARDO	Phase 4

#As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)

Inactivated SARS-CoV-2 by Sinovac Biotech, Adenovirus Type 5 Vector by Cansino Biological, mRNA-1273 by Moderna and ChAdOx1 nCoV-19, MenACWY by University of Oxford are some of the potential vaccine candidates which have already into phase II of clinical trials.

Fig.6. Vaccine Candidates in Phase II

4.2. Chemical Compounds

Several synthetic chemical compounds are being tested against the novel coronavirus. Intensive research and clinical trials are underway to assess the efficacy of new drugs and potential therapeutic targets for new drug development to treat COVID-19 patients. The ongoing clinical trials of new drug candidates are listed below.10

New Drug Candidates:

S. NO.	SOURCE	NEW DRUG APPLICATION	LEAD SPONSOR	STUDY PHASE#
1.	NCT04324489	DAS181	RENMIN HOSPITAL OF WUHAN UNIVERSITY	Early Phase 1
2.	NCT04285190	T89	TASLY PHARMACEUTICALS	Early Phase 1
3.	NCT04341116	TJ003234	I-MAB BIOPHARMA	Phase 1
4.	NCT04350736	TD-0903	THERAVANCE BIOPHARMA	Phase 1
5.	NCT04056689	DNL151	DENALI THERAPEUTICS	Phase 1
6.	NCT04268784	DNL343	DENALI THERAPEUTICS	Phase 1
7.	NCT04335136	RhACE2 APN01	APEIRON BIOLOGICS	Phase 2

8.	NCT04354389	DAS181	ANSUN BIOPHARMA	Phase 2
9.	NCT04313023	PUL-042 Inhalation	PULMOTECT	Phase 2
10.	NCT04312997	PUL-042 Inhalation	PULMOTECT	Phase 2
11.	NCT04347226	BMS-986253	MATTHEW DALLOS	Phase 2
12.	NCT04342897	LY3127804	ELI LILLY AND COMPANY	Phase 2
13.	NCT04334460	BLD-2660	BLADE THERAPEUTICS	Phase 2
14.	NCT04345614	CM4620 Injectable	CALCIMEDICA	Phase 2
15.	NCT04298060	DAS181	ANSUN BIOPHARMA	Phase 2
16.	NCT03808922	DAS181	ANSUN BIOPHARMA	Phase 3

[#] As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)

Drug Repurposing:

Many clinical trials are now conducting drug repurposing trials, i.e., new use of known therapeutic molecules for the treatment of COVID-19. Some of the important ongoing clinical trials for repurposing known antiviral, antimalarial and other therapeutic agents are enlisted below:

Antiviral Drugs:

S. NO.	SOURCE	DRUG	LEAD SPONSOR	STUDY PHASE#
1.	NCT04275388	Lopinavir	JIANGXI QINGFENG PHARMACEUTICAL	Early Phase 1
2.	NCT04261907	Ritonavir	FIRST AFFILIATED HOSPITAL OF ZHEJIANG UNIVERSITY	Early Phase 1
3.	NCT03891420	Galidesivir	BIOCRYST PHARMACEUTICALS	Phase 1
4.	NCT04349241	Favipiravir	AIN SHAMS UNIVERSITY	Phase 3
5.	NCT04343248	Nitazoxanide	ROMARK LABORATORIES	Phase 3
6.	NCT04292730	Remdesivir	GILEAD SCIENCES	Phase 3
7.	NCT04345276	DanopreviR	HUOSHENSHAN HOSPITAL	Phase 4

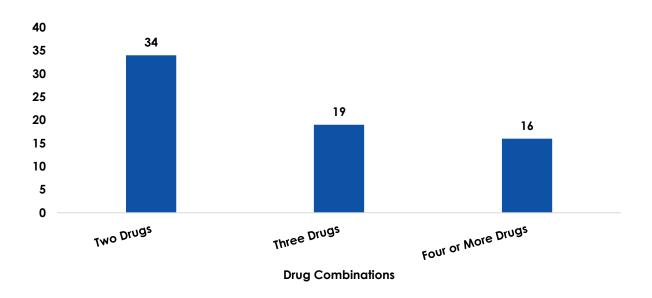
Antimalarial Drugs:

S. NO.	SOURCE	DRUG	LEAD SPONSOR	STUDY PHASE#
1.	NCT04342169	HCQ, Placebo oral tablet	UNIVERSITY OF UTAH	Phase 2
2.	NCT04342650	CQ Diphosphate, Placebo oral tablet	FUNDAÇÃO DE MEDICINA TROPICAL DR HEITOR VIEIRA DOURADO	Phase 2
3.	NCT04349371	CQ, Placebo oral tablet	COLUMBIA UNIVERSITY	Phase 2
4.	NCT04334148	HCQ, Placebo oral tablet	DUKE UNIVERSITY	Phase 3
5.	NCT04349228	HCQ, Placebo oral tablet	ABDERRAHMANE MAMI HOSPITAL	Phase 3
6.	NCT04346329	HCQ, Placebo oral tablet	UNIVERSIDAD NACIONAL DE COLOMBIA	Phase 3
7.	NCT04325893	HCQ, Placebo oral tablet	UNIVERSITY HOSPITAL ANGERS	Phase 3
8.	NCT04316377	HCQ	UNIVERSITY HOSPITAL AKERSHUS	Phase 4

[#] As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)

Miscellaneous Drugs:

S. NO.	SOURCE	MISCELLANEOUS DRUGS	LEAD SPONSOR	STUDY PHASE#
1.	NCT04293887	Recombinant Human Interferon A1β	TONGJI HOSPITAL	Early Phase 1
2.	NCT04312243	Nitric Oxide Gas	MASSACHUSETTS GENERAL HOSPITAL	Phase 2
3.	NCT04343976	Pegylated Interferon Lambda	RAYMOND CHUNG	Phase 2
4.	NCT04350320	Colchicine	FUNDACION PARA LA FORMACION E INVESTIGACION SANITARIAS DE LA REGION DE MURCIA	Phase 3
5.	NCT04348305	Hydrocortisone	SCANDINAVIAN CRITICAL CARE TRIALS GROUP	Phase 3



6.	NCT04325061	Dexamethasone	DR. NEGRIN UNIVERSITY HOSPITAL	Phase 4
7.	NCT04263402	Methylprednisolone, Methylprednisolone	TONGJI HOSPITAL	Phase 4

As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)

Combination of Drugs:

Due to multiple complications caused by COVID-19 infection, such as pulmonary tract infection, organ failure and other complications owing to patient previous health ailment, a combination of drugs are been extensively studied and tested. Some of combinations are giving good results. One such example is a two-week triple drug combination therapy of interferon with beta-1b, lopinavir–ritonavir and ribavirin, which had shown promising results. The test reduced the duration of viral shedding in patients with mild to moderate illness.11 The different ongoing clinical trials of various drug combinations are listed below.10

Combination of Two Drugs:

S. NO.	SOURCE	COMBINATION DRUGS	LEAD SPONSOR	STUDY PHASE#
1.	NCT04340349	Hydroxychloroquine, Bromhexine	INSTITUTO NACIONAL DE REHABILITACION	Early Phase 1
2.	NCT04295551	Lopinavir/Ritonavir, Xiyanping Injection	JIANGXI QINGFENG PHARMACEUTICAL	Early Phase 1
3.	NCT04343092	Ivermectine, Hydroxychloroquine	UNIVERSITY OF BAGHDAD	Phase 1
4.	NCT04339712	Anakinra, Tocilizumab	HELLENIC INSTITUTE FOR THE STUDY OF SEPSIS	Phase 2
5.	NCT04339426	Atovaquone, Azithromycin	HONORHEALTH RESEARCH INSTITUTE	Phase 2
6.	NCT04330586	Ciclesonide, Hydroxychloroquine	KOREA UNIVERSITY GURO HOSPITAL	Phase 2
7.	NCT04347915	Clevudine, Hydroxychloroquine	BUKWANG PHARMACEUTICAL	Phase 2
8.	NCT04328961	Hydroxychloroquine, Ascorbic Acid	UNIVERSITY OF WASHINGTON	Phase 2
9.	NCT04350281	Interferon Beta-1b, Hydroxychloroquine	THE UNIVERSITY OF HONG KONG	Phase 2
10.	NCT04330690	Lopinavir, Ritonavir	SUNNYBROOK HEALTH SCIENCES CENTRE	Phase 2
11.	NCT04307693	Lopinavir/Ritonavir, Hydroxychloroquine	ASAN MEDICAL CENTER	Phase 2
12.	NCT04329650	Siltuximab, Methylprednisolone	JUDIT PICH MARTÍNEZ	Phase 2
13.	NCT04261270	Asc09f, Oseltamivir	TONGJI HOSPITAL	Phase 3
14.	NCT04339816	Azithromycin, Hydroxychloroquine	ST. ANNE'S UNIVERSITY HOSPITAL BRNO	Phase 3

15.	NCT04252274	Darunavir, Cobicistat	SHANGHAI PUBLIC HEALTH CLINICAL CENTER	Phase 3
16.	NCT04355052	Hydroxychloroquine, Amostat Mesylate	SHEBA MEDICAL CENTER	Phase 3
17.	NCT04345445	Tocilizumab, Methylprednisolone	UNIVERSITY OF MALAYA	Phase 3
18.	NCT04254874	Abidol Hydrochloride, Interferon	TONGJI HOSPITAL	Phase 4
19.	NCT04338906	Camostat Mesilate, Hydroxychloroquine	HEINRICH-HEINE UNIVERSITY	Phase 4
20.	NCT04341493	Nitazoxanide, Hydroxychloroquine	HUGO MENDIETA ZERON	Phase 4

[#] As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)

Combination of Three Drugs:

S. NO.	SOURCE	COMBINATION DRUGS	LEAD SPONSOR	STUDY PHASE#
1.	NCT04273763	Bromhexine Hydrochloride, Arbidol Hydrochloride, Recombinant Human Interferon A2b	SECOND AFFILIATED HOSPITAL OF WENZHOU MEDICAL UNIVERSITY	Early Phase 1
2.	NCT04344457	Hydroxychloroquine, Indomethacin, Zithromax	PERSEVERANCE RESEARCH CENTER, LLC	Phase 1
3.	NCT04351347	Chloroquine, Nitazoxanide, Ivermectin	TANTA UNIVERSITY	Phase 2
4.	NCT04328012	Lopinavir/Ritonavir, Hydroxychloroquine Sulfate, Losartan	BASSETT HEALTHCARE	Phase 2
5.	NCT04341870	Sarilumab, Azithromycin, Hydroxychloroquine	ASSISTANCE PUBLIQUE - HÔPITAUX DE PARIS	Phase 2
6.	NCT04332094	Tocilizumab, Hydroxychloroquine, Azithromycin	FUNDACIÓ INSTITUT DE RECERCA DE L'HOSPITAL DE LA SANTA CREU I SANT PAU	Phase 2
7.	NCT04338698	Hydroxychloroquine, Oseltamivir, Azithromycin	SHEHNOOR AZHAR	Phase 3

8.	NCT04328285	Hydroxychloroquine, Lopinavir, Ritonavir	CENTRE HOSPITALIER UNIVERSITAIRE DE SAINT ETIENNE	Phase 3
9.	NCT04330638	Anakinra, Siltuximab, Tocilizumab	UNIVERSITY HOSPITAL, GHENT	Phase 3
10.	NCT04350671	Interferon Beta-1a, Lopinavir/Ritonavir, Hydroxychloroquine	SHAHID BEHESHTI UNIVERSITY OF MEDICAL SCIENCES	Phase 4

[#] As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)

Combination of Four or More Drugs:

S. NO.	SOURCE	COMBINATION DRUGS	LEAD SPONSOR	STUDY PHASE#
1.	NCT04333407	Aspirin, Clopidogrel, Rivaroxaban, Atorvastatin, Omeprazole	IMPERIAL COLLEGE LONDON	Early Phase 1
2.	NCT04251871	Oxygen Therapy, Alfa Interferon, Lopinavir/Ritonavir, Traditional Chinese Medicines	BEIJING 302 HOSPITAL	Early Phase 1
3.	NCT04354428	Ascorbic Acid, Folic Acid, Hydroxychloroquine Sulfate, Folic Acid, Hydroxychloroquine Sulfate, Azithromycin	UNIVERSITY OF WASHINGTON	Phase 2
4.	NCT04351724	Chloroquine/Hydroxychloroquine, Lopinavir/Ritonavi, Rivaroxaban, Thromboprophylaxis, Candesartan, Non- RAS Blocking Antihypertensives, Clazakizumab	MEDICAL UNIVERSITY OF VIENNA	Phase 2
5.	NCT04345419	Chloroquine, Favipiravir, Nitazoxanide, Ivermectin, Niclosamide	TANTA UNIVERSITY	Phase 2
6.	NCT04331470	Levamisole, Budesonide, Formoterol Inhaler, Lopinavir/Ritonavir, Hydoxychloroquine	FASA UNIVERSITY OF MEDICAL SCIENCES	Phase 2
7.	NCT04321993	Lopinavir/Ritonavir, Hydroxychloroquine Sulfate, Baricitinib, Sarilumab	LISA BARRETT	Phase 2

8.	NCT04347031	Mefloquine, Hydroxychloroquine, Mefloquine, Azithromycin, Tocilizumab, Hydroxychloroquine, Azithromycin, Tocilizumab	BURNASYAN FEDERAL MEDICAL BIOPHYSICAL CENTER	Phase 2
9.	NCT04303299	Protease Inhibitors, Oseltamivir, Favipiravir, Hydroxychloroquine	RAJAVITHI HOSPITAL	Phase 3
10.	NCT04255017	Abidol Hydrochloride, Oseltamivir, Lopinavir, Ritonavir	TONGJI HOSPITAL	Phase 4
11.	NCT04286503	Carrimycin, Lopinavir/Ritonavir, Arbidol, Chloroquine Phosphate	BEIJING YOUAN HOSPITAL	Phase 4
12.	NCT04343768	Hydroxychloroquine, Lopinavir/Ritonavir, Interferon Beta-1a, Interferon Beta-1b	SHAHID BEHESHTI UNIVERSITY OF MEDICAL SCIENCES	Phase 4
13.	NCT04350684	Umifenovir, Interferon-B 1a, Lopinavir / Ritonavir, Hydroxychloroquine	SHAHID BEHESHTI UNIVERSITY OF MEDICAL SCIENCES	Phase 4

[#] As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)

4.3. Monoclonal Antibody

Monoclonal antibodies (mAb or moAb) are made of identical immune cells that are clones of a unique parent cell. Like the antibodies, mAbs can recognize specific targets of a virus. Recently, Israel Institute for Biological Research (IIBR) has completed the development phase of coronavirus antibody or passive vaccine.12 Italian researcher developed a vaccine which has antibodies generated in mice that works on human cells.13 Some of the important ongoing clinical trials testing various mAbs are listed below.10

S. NO.	SOURCE	MONOCLONAL ANTIBODY	LEAD SPONSOR	STUDY PHASE#
1.	NCT04305106	Bevacizumab	QILU HOSPITAL OF SHANDONG UNIVERSITY	Early Phase 1
2.	NCT04275245	Meplazumab	tang du hospital	Phase 1
3.	NCT04331795	Tocilizumab	UNIVERSITY OF CHICAGO	Phase 2

4.	NCT04348500	Clazakizumab	CEDARS SINAI MEDICAL CENTER	Phase 2
_				
5.	NCT04315298	Sarilumab	REGENERON PHARMACEUTICALS	Phase 2
6.	NCT04347239	Leronlimab	CYTODYN	Phase 2
7.	NCT04335071	Tocilizumab	UNIVERSITY HOSPITAL INSELSPITAL	Phase 2
8.	NCT04344782	Bevacizumab	ASSISTANCE PUBLIQUE HÔPITAUX DE PARIS	Phase 2
9.	NCT04343144	Nivolumab	ASSISTANCE PUBLIQUE HÔPITAUX DE PARIS	Phase 2
10.	NCT04346797	Eculizumab	ASSISTANCE PUBLIQUE HÔPITAUX DE PARIS	Phase 2
11.	NCT04351243	Gimsilumab	KINEVANT SCIENCES	Phase 2
12.	NCT04343651	Leronlimab	CYTODYN	Phase 2
13.	NCT04275414	Bevacizumab	QILU HOSPITAL OF SHANDONG UNIVERSITY	Phase 2
14.	NCT04335305	Tocilizumab, Pembrolizumab	MEDSIR	Phase 2
15.	NCT04324021	Emapalumab	SWEDISH ORPHAN BIOVITRUM	Phase 2
16.	NCT04327388	Sarilumab	SANOFI	Phase 2
17.	NCT04324073	Sarilumab	ASSISTANCE PUBLIQUE HÔPITAUX DE PARIS	Phase 2
18.	NCT04315480	Tocilizumab	UNIVERSITÀ POLITECNICA DELLE MARCHE	Phase 2
19.	NCT04320615	Tocilizumab	ROCHE	Phase 3
20.	NCT04351152	Lenzilumab	HUMANIGEN	Phase 3
21.	NCT04158648	Emicizumab	ROCHE	Phase 3

[#] As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)

4.4. Plasma Therapy

Along with various vaccine and chemical compound trials, plasma therapy is also one of the treatments which is being tried. Convalescent plasma obtained from COVID-19 survivors is intravenously administrated to patients requiring hospitalization for symptomatic "high risk" COVID-19 disease.11 Plasma

therapy is found to be helpful in free viral clearance, blocking the new infection and accelerating the infected cell clearance, which suppress viraemia.12

S. NO.	SOURCE	PLASMA THERAPY	LEAD SPONSOR	STUDY PHASE#
1.	NCT04355897	Convalescent COVID-19 Plasma	THE CHRIST HOSPITAL	Early Phase 1
2.	NCT04353206	Multiple Doses of Anti-Sars-Cov-2 Convalescent Plasma	JOHNS HOPKINS UNIVERSITY	Early Phase 1
3.	NCT04340050	Anti-Sars-Cov-2 Convalescent Plasma	UNIVERSITY OF CHICAGO	Early Phase 1
4.	NCT04346589	Antibodies Obtained with DFPP From Convalescent Patients	AFERETICA	Early Phase 1
5.	NCT04264858	Immunoglobulin of Cured Patients	WUHAN UNION HOSPITAL	Early Phase 1
6.	NCT03042143	Human Umbilical Cord Derived Cd362 Enriched Mscs, Placebo (Plasma-Lyte 148)	BELFAST HEALTH AND SOCIAL CARE TRUST	Phase 1
7.	NCT04332380	Plasma	UNIVERSIDAD DEL ROSARIO	Phase 2
8.	NCT04332835	Plasma	UNIVERSIDAD DEL ROSARIO	Phase 2
9.	NCT04345991	Transfusion of COVID-19 Convalescent Plasma	ASSISTANCE PUBLIQUE - HÔPITAUX DE PARIS	Phase 2
10.	NCT04354831	Anti-Sars-Cov-2 Convalescent Plasma	MEDICAL COLLEGE OF WISCONSIN	Phase 2
11.	NCT04323800	Anti- Sars-Cov-2 Plasma, Sars- Cov-2 Non-Immune Plasma	JOHNS HOPKINS UNIVERSITY	Phase 2
12.	NCT04343755	Convalescent Plasma	HACKENSACK MERIDIAN HEALTH	Phase 2
13.	NCT04345523	Blood and Derivatives	PUERTA DE HIERRO UNIVERSITY HOSPITAL	Phase 2
14.	NCT04350580	Human Immunoglobulin	CENTRE HOSPITALIER ST ANNE	Phase 3

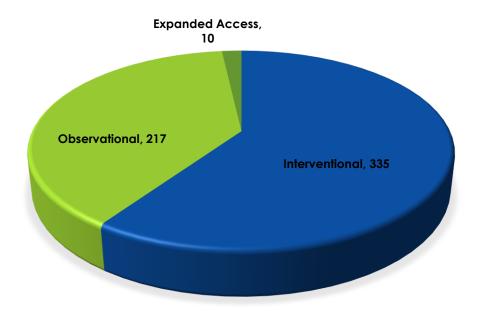
[#] As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)

4.5. Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) have regenerative properties and the ability to differentiate into diverse cell lineages. The beneficial effect of MSCs treatment is principally due to the immunomodulation and regenerative potential of these cells. MSCs can help in reducing the pathological changes of lungs and inhibit the cell-mediated immune-inflammatory response, induced by the influenza virus.

S. NO.	SOURCE	STEM CELLS	LEAD SPONSOR	STUDY PHASE#
1.	NCT04302519	Dental pulp mesenchymal	CAR-T (SHANGHAI)	Early Phase 1
		stem cells	BIOTECHNOLOGY	
2.	NCT04273646	UC-MSCs	WUHAN UNION HOSPITAL	Early Phase 1
3.	NCT04313322	WJ-MSCs	STEM CELLS ARABIA	Phase 1
4.	NCT04341610	Stem Cell Product	RIGSHOSPITALET	Phase 1
5.	NCT04252118	MSCs	BEIJING 302 HOSPITAL	Phase 1
6.	NCT04315987 NestCell® MSCs		AZIDUS BRASIL	Phase 1
7.	NCT04346368	BM-MSCs	GUANGZHOU INSTITUTE OF RESPIRATORY DISEASE	Phase 1
8.	NCT04331613	CAStem	CHINESE ACADEMY OF SCIENCES	Phase 1
9.	NCT04276987	MSCs-derived exosomes	RUIJIN HOSPITAL	Phase 1
10.	NCT04288102	MSCs	BEIJING 302 HOSPITAL	Phase 2
11.	NCT04348435 HB-adMSCs		HOPE BIOSCIENCES	Phase 2
12.	NCT04349631	HB-adMSCs	HOPE BIOSCIENCES	Phase 2
13.	NCT04299152 Treated Mononuclear Cells Apheresis		TIANHE STEM CELL BIOTECHNOLOGIES	Phase 2
14.	NCT04269525	UC-MSCs	ZHIYONG PENG	Phase 2

[#] As of 22 May 2020 (https://clinicaltrials.gov/ct2/home)



5. Trend Analysis

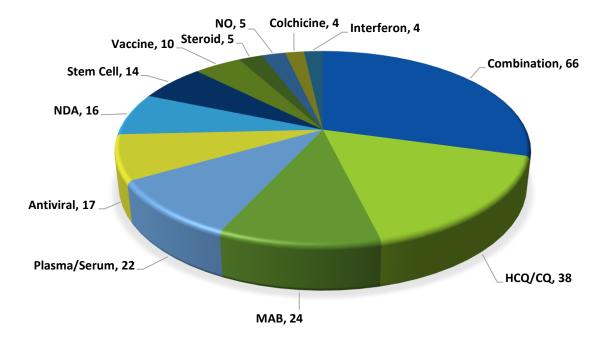
In response to the global COVID-19 pandemic, clinical trial research evaluating the efficacy and safety of suitable candidates to treat COVID-19 are emerging at an exceptional pace. Close to 1,300 clinical trials have been registered globally.

5.1. Study Type

Below graph represents the type of ongoing clinical trial studies.

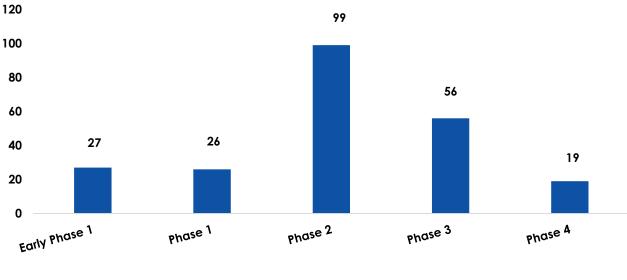
Definition:

Expanded access: Expanded access is the use of an unapproved drug under special forms of investigational new drug applications (IND), outside of a clinical trial, by people with serious or life-threatening conditions who do not meet the enrolment criteria for the clinical trial in progress.


Observational: In observational studies, the investigator makes no intervention, and patients are allocated treatment based on clinical decisions.

Interventional: An interventional study is one in which the patient receives some kind of intervention, such as a new medicine, to evaluate it.

5.2. Interventional Therapy


The below graph represents major interventional therapies currently been evaluated in various ongoing clinical trials.

A large number of clinical trials are focused on combination of drugs for the treatment of COVID-19 infection. Further, several clinical trials are ongoing for repurposing hydroxychloroquine, a well-known antimalarial drug. Trials for several vaccines are also underway for prophylaxis of COVID-19. Plasma therapy and monoclonal antibody treatment are also being prominently tested along with stem cell therapy to reverse the damage to the patient's body by utilizing the regeneration properties of stem cells.

5.3. Clinical Trial Stage

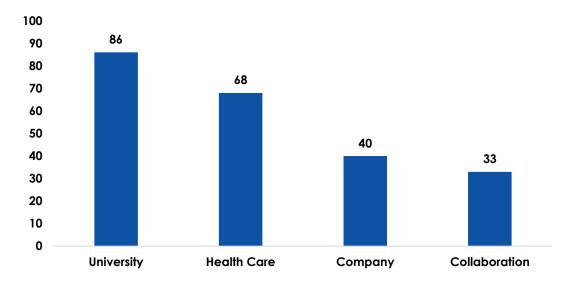
The below graph represents the status of interventional therapies in the clinical trial phase.

Clinical Trial Phase

For almost half of the ongoing clinical trials, the vaccine/drug candidates have entered in to the phase 2 wherein they are being tested on patients to assess their efficacy and side effects.

Definitions:

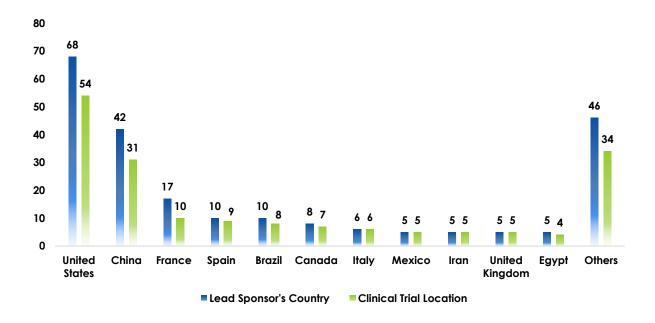
Early Phase 1: Pharmacokinetics; particularly, oral bioavailability and half-life of the drug.


Phase 1: Testing of a drug on healthy volunteers for safety; involves testing multiple doses (dose-ranging).

Phase 2: Testing of a drug on patients to assess efficacy and side effects.

Phase 3: Testing of a drug on patients to assess efficacy, effectiveness, and safety.

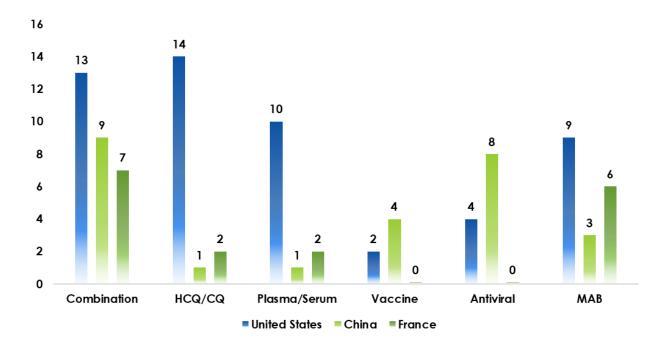
Phase 4: Post marketing surveillance i.e. watching drug use in public.


5.4. Lead Sponsor Type

Universities are ahead in the race of clinical trial studies followed by healthcare organizations and companies. Moreover, universities, healthcare organizations and companies are also collaborating and synchronizing their efforts to fight this pandemic.

5.5. Clinical Trial Location Vs Lead Sponsor's Country

The below graph represents the top location of ongoing clinical trials Vs the lead sponsor's country of origin.



United States is the seat for highest numbers of ongoing clinical trials followed by China and France. A similar trend is observed with lead sponsor's country origin. Lead sponsors based on United States are not only conducting clinical trials in the United States but also sponsoring clinical trials in other countries.

5.6. Lead Sponsor's Country Vs Interventional Drugs

The below graph represents the lead sponsor's country origin Vs type of Interventional drugs in the clinical trials.

The top three lead sponsors based out of United States, China and France are sponsoring clinical trials focusing on use of combination of drugs for the treatment of COVID-19. China is ahead of United States in terms of clinical trials on vaccine development and repurposing of antiviral drugs.

6. Summary

The academicians, universities, healthcare providers and companies across the globe are fueling their energies in search of a vaccine and drug candidate for prophylaxis and the treatment of COVID-19 disease. Several hundreds of clinical trials are underway to establish evidence around investigational drugs and to identify a suitable vaccine candidate.

Developing inactivated or attenuated viral-based vaccines against coronavirus is challenging due to the variability of the strains. Moderna mRNA vaccine candidate for COVID-19 has shown protective antibodies production in a group of healthy volunteers in phase II of clinical trials. Oxford University vaccine candidate "ChAdOx1 nCoV-19" initial tests on rhesus macaques' monkeys had shown symptoms of fighting the virus, the tests have now entered phase II of clinical trials.

A large number of ongoing clinical trials are focused on interventional studies wherein drugs/biologics are being used to treat the patient. Clinical trials based on combination of drugs for the treatment of COVID-19 are the most studied trials along with the trials for repurposing hydroxychloroquine to treat COVID-19. Plasma therapy, monoclonal antibody and stem cell therapy are being extensively tested in clinical trials as an option for treatment of COVID-19.

Most of the clinical trials are headed by Universities and healthcare organization owing to the current situation of pandemic and the large influx of patients with COVID-19. The clinical trial race is preceded by the USA and China, with two-third of the total ongoing clinical trials being sponsored/conducted in USA and China.

With no approved vaccine or treatment available for COVID-19, Moderna vaccine candidate and Gilead Sciences antiviral drug remdesivir have shown a ray of hope. In this modern era of next generation technologies, we are able to develop multiple vaccine candidates in matter of few months, but the clinical efficacy, human safety testing and if approved, the mass production of vaccine are some of the hurdles which we need to tackle in order to develop a successful vaccine for the prophylaxic of COVID-19 pandemic.

7. References & Credits

- World Health Organization Declares Global Emergency: A Review of the 2019 Novel Coronavirus (COVID-19)
- Novel Coronavirus (COVID-19) Epidemic: What Are the Risks for Older Patients?
- Severe acute respiratory syndrome (SARS)-WHO
- COVID-19 infection: origin, transmission, and characteristics of human coronaviruses
- World Health Organization (WHO) Website assessed on 22 May 2020
- Call for Papers: The pathophysiology of COVID-19 and SARS-CoV-2 infection
- Centers for Disease Control and Prevention (CDC) Website assessed on 19 May 2020
- Ayurvedic drug gets nod for clinical trials
- Can Dabur Chyawanprash or panchkosha meditation help with Covid? Unusual trials on in India
- Clinical Trial.Gov
- Drug combination shows promise for treating COVID-19
- Israeli research team gets a step closer to developing a Covid-19 vaccine
- Coronavirus breakthrough: Italian scientists claim to have developed world's first COVID-19 vaccine
- Convalescent plasma as a potential therapy for COVID-19
- National Institutes of Health (NIH) Website assessed on 18 May 2020
- Food and Drug Administration USA Website assessed on 19 May 2020

DISCLAIMER

IIPRD has prepared this sample report, wherein the contents of this report is based on internal evaluation of clinical trials as retrieved from resources that are believed to be reliable by IIPRD. Being a sample report, complete list of clinical trial data retrieved/analyzed is not disclosed herein; however, it can be made available on request, subject to IIPRD terms and conditions though. IIPRD disclaims all warranties as to the accuracy, completeness or adequacy of the report. The searching and analysis is subject to individual/researcher's discretion, neither IIPRD nor its affiliates, nor any of its proprietors and employees (together, "personnel") are responsible for the authenticity of the data. The purpose of this report is not to formulate any sort of legal advice.

Delhi | Noida | Mumbai | Pune | Bengaluru | Hyderabad | Indore | Jalandhar | Chennai | US | Bangladesh | Myanmar | Vietnam | Nepal | Malaysia | Sri Lanka

ABOUT IIPRD

IIPRD is a premier Intellectual Property Consulting and Commercialization/Licensing Firm with a diversified business practice providing services in the domain of Commercialization, Valuation, Licensing, Transfer of Technology and Due-Diligence of Intellectual Property Assets along with providing complete IP and Patent Analytics and Litigation Support Services to International Corporates and Global IP Law Firms.

Contact Person

Tarun Khurana

iiprd@iiprd.com, info@khuranaandkhurana.com

Contact No.: +91-120-4296878, 2399113, 2399010

Contact Details

Noida (NCR) Office – Head Office

E-13, UPSIDC Site – IV, Behind Grand Venice, Greater Noida, 201308

Visit us at

www.iiprd.com | www.khuranaandkhurana.com